10 research outputs found

    Analyzing seasonality of tuberculosis across Indian states and union territories.

    Get PDF
    A significant seasonal variation in tuberculosis (TB) is observed in north India during 2006-2011, particularly in states like Himachal Pradesh, Haryana and Rajasthan. To quantify the seasonal variation, we measure average amplitude (peak to trough distance) across seasons in smear positive cases of TB and observe that it is maximum for Himachal Pradesh (40.01%) and minimum for Maharashtra (3.87%). In north India, smear positive cases peak in second quarter (April-June) and reach a trough in fourth quarter (October-December), however low seasonal variation is observed in southern region of the country. The significant correlations as 0.64 (p-value<0.001), 0.54 (p-value<0.01) and 0.42 (p-value<0.05) are observed between minimum temperature and seasonality of TB at lag-1 in north, central and northeast India respectively. However, in south India, this correlation is not significant

    Regulation Of Long-Range Planar Cell Polarity By Fat- Dachsous Signaling

    No full text
    Planar cell polarity (PCP) is the organization of cellular characteristics within the plane of a tissue. PCP manifests both structurally, as in the directionality of insect bristles or mammalian skin hair, or dynamically, as in vertebrate neurulation, gastrulation, and oriented cell division in the kidney. Two well-conserved pathways are known to regulate PCP in invertebrates and in vertebrates: the Frizzled/PCP pathway and the Fat-Dachsous (Ft-Ds) pathway. The latter consists of the cadherins Ft and Ds, along with the Golgi kinase Four-jointed (Fj) and the transcriptional co-repressor Atrophin (Atro). Ft and Ds can bind each other, suggesting a mechanism for signal transduction. Fj phosphorylates Ft and Ds, modulating their binding affinities for each other. Atro is proposed to link Ft-Ds signaling with downstream events in the nucleus during eye development. The details of Ft-Ds binding, and the consequences of their interactions with other members of the pathway are poorly understood. In this work, I quantitatively analyzed Ft-Ds pathway mutant clones for their effects on ommatidial polarity in the Drosophila eye. My findings suggest that the Ft-Ds pathway regulates PCP independently of asymmetric cellular accumulation of Ft or Ds. I found that Atro has a position-specific role in regulating polarity in the eye, that Fj dampens clonal polarity signals, and that asymmetric accumulation of the atypical myosin Dachs is not essential for production and propagation of a long-range PCP signal. My observations suggest that Ft and Ds interact to modulate a secondary signal that regulates long-range polarity, that signaling by the Ds intracellular domain is dependent on Ft, and that ommatidial fate specification is genetically separable from long-range signaling.Ph

    A note on the origin of Clinopyroxene megacrysts from the Udiripikonda lamprophyre, Eastern Dharwar Craton, southern India

    No full text
    Abundant sub-rounded to sub-angular and centimeter-sized clinopyroxene megacrysts constitute a conspicuous feature of the Udiripikonda lamprophyre, located in the Eastern Dharwar craton, Southern India. These clinopyroxene megacrysts, at times, are also associated with minor amounts of biotite. The megacrysts lack reaction-rim or any other disequilibrium textures generally displayed by crustal and mantle xenocrysts/xenoliths entrained in such volatile-rich magmas. Cr2O3-impoverished (&#60; 0.1 wt%) nature of the clinopyroxene megacrysts preclude them from being chrome-diopside, derived from the disaggregation of upper mantle rocks, and commonly found entrained in kimberlites,. The clinopyroxene megacrysts (Wo47.43- 49.20En32.44- 33.64 Fs13.73- 15.03; Ac3.32- 4.69) and associated biotite (Mg#: 0.84- 0.90) are compositionally similar to the clinopyroxene (Wo43.68-47.76; En37.47-44.58; Fs8.36 – 12.31; Ac2.70- 3.38) and biotite (Mg#: 0.84- 0.88) occurring as liquidus phases within the host lamprophyre. Clinopyroxene barometry reveals an overlapping pressure estimates for megacrysts (9.8 to 12.4 kbar) and phenocrysts (8.4 to 10.1 kbar). Likewise, the Tiin-biotite geothermometry also suggests an overlapping temperature range of 957o C to 1097o C and 904o C to 1069o C for megacrystal suite and phenocrysts respectively at pressure of &#732;10 kbar. The clinopyroxene &#177; biotite megacrysts of this study are, thus, inferred to be cognate products which crystallized under high- to medium-pressure conditions during the evolution of lamprophyre magma

    Petrogenesis of an alkaline lamprophyre (camptonite) with ocean island basalt (OIB)-affinity at the NW margin of the Cuddapah basin, eastern Dharwar craton, southern India

    No full text
    We report petrology and geochemistry (including Sr and Nd isotopes) of a fresh lamprophyre at Ankiraopalli area at the north-western margin of Paleo-Mesoproterozoic Cuddapah basin, eastern Dharwar craton, southern India. Ankiraopalli samples possess a typical lamprophyre porphyritic-panidiomorphic texture with phenocrysts of kaersutite and diopside set in a plagioclase dominant groundmass. Combined mineralogy and geochemistry classify it as alkaline lamprophyre in general and camptonite in particular. Contrary to the calc-alkaline and/or shoshonitic orogenic nature portrayed by lamprophyres occurring towards the western margin of the Cuddapah basin, the Ankiraopalli samples display trace element composition revealing striking similarity with those of ocean island basalts, Italian alkaline lamprophyres and highlights an anorogenic character. However, the Sr-87/Sr-86(initial) (0.710316 to 0.720016) and epsilon Nd-initial (-9.54 to -9.61) of the Ankiraopalli lamprophyre show derivation from an `enriched' mantle source showing long term enrichment of incompatible trace elements and contrast from those of (i) OIB, and (ii) nearby Mahbuhnagar alkaline mafic dykes of OIB affinity. Combining results of this study and recent advances made, multiple mantle domains are identified in the Eastern Dharwar craton which generated distinct Mesoproterozoic lamprophyre varieties. These include (i) Domain I, involving sub-continental lithospheric mantle source essentially metasomatized by subduction-derived melts/fluids (represented by orogenic calcalkaline and/or shoshonitic lamprophyres at the Mudigubba, the Udiripikonda and the Kadiri); (ii) Domain II, comprising a mixed sub-continental lithospheric and asthenospheric source (represented by orogenic-anorogenic, alkaline to calc-alkaline transitional lamprophyres at the Korakkodu), and (iii) Domain III, representing a sub-continental lithospheric source with a dominant overprint of an asthenospheric (plume) component (represented by essentially alkaline lamprophyres at the Ankiraopalli). Our study highlights the varied mantle source heterogeneities and complexity of geodynamic processes involved in the Neoarchean-Paleo/Mesoproterozoic evolution of the Eastern Dharwar craton

    Post-collisional talc-alkaline lamprophyres from the Kadiri greenstone belt: Evidence for the Neoarchean convergence-related evolution of the Eastern Dharwar Craton and its schist belts

    No full text
    Lamprophyres from the greenstone belts play a crucial role in deciphering tectonic and geodynamic processes operating during the Archean. This study presents a comprehensive mineralogical and geochemical study of three lamprophyre dykes with talc-alkaline to shoshonitic affinities from the Neoarchean Kadiri schist belt, eastern Dharwar craton, southern India. These rocks display porphyritic-panidiomorphic texture, typical of the lamprophyres with amphibole (magnesio-hornblende) as phenocrysts, biotite as microphenocrysts and feldspar, epidote, titanite and apatite confined to the groundmass. Alteration of biotite to chlorite is observed along with mild deformation in the amphibole phenocrysts. Based on mineralogy and major oxide geochemistry, these rocks are classified as the talc-alkaline lamprophyres. Higher Ba/Nb and low Nb/La points to their derivation from an enriched lithospheric mantle source and higher Th/Yb ratio along with negative TNT (Ti-Nb-Ta) and Zr-Hf anomalies on the primitive mantle (PM) normalized multi-element diagram indicates dehydrated fluids from the foundering slab could be the possible metasomatic agent. Fractionated HREE ratios (Gd-N/Yb-N >1.9) and higher Sm-N/Yb-N suggests that the source region lies in the garnet stability field. Higher than PM Rb/Sr along with positive correlation between K/La and Rb/La reveals presence of metasomatic phlogopite in the source region. Strong negative initial epsilon Nd along with radiogenic (87) Sr/(86) Sr ratios further support an enriched mantle reservoir involved in their genesis. Non-modal batch melting (1-5%) of a mixed source (phlogopite-garnet peridotite) assuming 5% mixing of subducted sediment with ambient mantle wedge (depleted mantle) satisfies the multi-element concentration pattern shown by the Kadiri lamprophyres. The source enrichment can be linked to the accretion-related growth of Dharwar craton and its schist belts during Neoarchean. Our study shows that a majority of lamprophyres associated with the Archean greenstone belts display a shoshonitic character; this highlights the role of subduction-related processes in the growth and evolution of the greenstone belts (C) 2018 Elsevier B.V. All rights reserved

    Petrogenesis of a Mesoproterozoic shoshonitic lamprophyre dyke from the Wajrakarur kimberlite field, eastern Dharwar craton, southern India: Geochemical and Sr-Nd isotopic evidence for a modified sub-continental lithospheric mantle source

    No full text
    Mineralogy and geochemistry of the Udirpikonda lamprophyre, located within the Mesoproterozoic diamondiferous Wajrakarur kimberlite field (WKF), towards the western margin of the Paleo-Mesoproterozoic Cuddapah basin are presented. The lamprophyre is characterised by a panidiomorphic-porphyritic texture imparted by clinopyroxene, olivine and biotite set in a groundmass of feldspar and spinel. Olivine occurs as the microphenocrysts with a composition range of Fo(87-78). Clinopyroxenes display reverse as well as oscillatory optical zoning and are diopsidic in nature with a variation in the composition from core (Wo(47) En(28) Fs(20)Ac(5)) to rim (Wo(46)En(41)Fs(11)Ac(3)). Biotite (Mg# < 0.6) is the only mica present and spinels are titano-magnetites showing ulvospinel- magnetite solid solution. Plagioclase is the dominant feldspar with a variable compositional range of An(41-8)Ab(82-56)Or(33-3). Based on the mineralogy, the lamprophyre can be classified to be of calc-alkaline variety but its geochemistry display mixed signals of both alkaline and calc-alkaline lamprophyres. K2O/Na2O ranges from 1.49 to 2.79, making it distinctly potassic and highlights its shoshonitic character. Moderate Mg# (60-65), Ni (110-200 ppm) and Cr (110-260 ppm) contents in the bulk-rock indicate substantial fractional crystallization of olivine and clinopyroxene. Fractionated chondrite normalized REE patterns (average (La/Yb)(N) = 37.56) indicates involvement of an enriched mantle source from within the garnet stability field whereas slightly negative Ta-Nb-Ti and Hf anomalies displayed on the primitive mantle normalized multi-element spider gram highlight involvement of a subducted component in the mantle source. Given the spatial disposition of the studied lamprophyre, the age of the emplacement is considered to be coeval with WKF kimberlites (similar to 1.1 Ga) and the initial Nd-143/Nd-144 (0.5100650.510192) and Sr-87/Sr-86 (0.705333-0.706223) are strikingly similar to those observed for the Smoky Butte lamproites, Montana, USA. Fluid-related subduction enrichment of the mantle source is apparent from the enriched ratios of La/Nb, Ba/Nb and (Hf/Sm)(N), (Ta/La)(N) < 1. Petrogenetic modelling reveals melt generation from 1 to 2% partial melting of an enriched mantle source that subsequently underwent fractional crystallization. Our study provides geochemical and isotopic evidence for a sub-continental lithospheric mantle (SCLM) modified by subduction and asthenospheric upwelling in the Eastern Dharwar Craton. The partial melting of a resulting heterogeneous Eastern Dharwar Craton SCLM to generate Udiripikonda lamprophyre and Wajrakarur kimberlites has been attributed to the Mesoproterozoic regional lithospheric extension event. (C) 2017 Elsevier B.V. All rights reserved

    Petrology and Sr-Nd isotope systematics of the Ahobil kimberlite (Pipe-16) from the Wajrakarur field, Eastern Dharwar craton, southern India

    No full text
    Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite (Pipe-16) from the Wajrakarur kimberlite field (WKF), Eastern Dharwar craton (EDC), southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of (i) liquidus mineral composition, (ii) bulk-rock chemistry, and (iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The T-DM Nd model age (similar to 2.0 Ga) of the Ahobil kimberlite is (i) significantly older than those (1.5-1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC, (ii) indistinguishable from those of the Mesoproterozoic EDC lamproites, and (iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO(2), as inferred from perovskite oxy-barometry, suggest non-prospective nature of the Ahobil kimberlite for diamond. (C) 2018, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V

    Pyroxenite dykes with petrological and geochemical affinities to the Alaskan-type ultramafics at the northwestern margin of the Cuddapah basin, Dharwar craton, southern India: Tectonomagmatic implications

    No full text
    Two previously reported lamprophyre dykes from the Kalwakurthy area, at the northwestern margin of the Cuddapah basin, Dharwar craton, southern India, are reinvestigated. Petrography reveals that they have an overall cumulate texture and comprise clinopyroxene (dominant phase), amphibole (mostly secondary), magnetite, ilmenite and chromite and are reclassified as clinopyroxenites. The chemistry of clinopyroxene and chromite, bulk-rock major and trace element composition and the Sr-Nd isotopic systematics of the Kalwakurthy dykes strongly favour the involvement of subduction-related processes in their genesis and are strikingly similar to those of the continental arc-cumulates and Alaskan-type ultramafics reported from the supra-subduction type of tectonic settings. Incompatible trace element ratios, involving high field strength elements, of these clinopyroxenites are also suggestive of the fluid-related metasomatism influencing their source regions. Petrogenetic modelling reveals that 10-20% partial melting of the fertile lithospheric mantle source was involved in their genesis. The tectonomagmatic significance of the studied clinopyroxenites is evaluated in light of the existing models invoking a Neoarchaean subduction in the evolution of the Dharwar craton
    corecore