2,634 research outputs found

    Exploring the Micro-Structure of the Proton: from Form Factors to DVCS

    Get PDF
    For a long time people made the mistake of thinking the proton was understood. New experiments, ranging from form factors to deeply virtual Compton scattering, promise a new era of highly informative studies. Among the controversial topics of the future may be such basic features as the physical size of the proton, the role of quark orbital angular momentum, and the possibility of making "femto-photographic" images of hadronic micro-structure.Comment: 19 pages, 2 figures, presented by John Ralston at the Workshop on "Testing QCD through Spin Observables in Nuclear Targets", University of Virginia, Charlottesville, Virginia, April 18-2

    Eruption of a plasma blob, associated M-class flare, and large-scale EUV wave observed by SDO

    Full text link
    We present a multiwavelength study of the formation and ejection of a plasma blob and associated EUV waves in AR NOAA 11176, observed by SDO/AIA and STEREO on 25 March 2011. SDO/AIA images clearly show the formation and ejection of a plasma blob from the lower solar atmosphere at ~9 min prior to the onset of the M1.0 flare. This onset of the M-class flare happened at the site of the blob formation, while the blob was rising in a parabolic path with an average speed of ~300 km/s. The blob also showed twisting and de-twisting motion in the lower corona, and the blob speed varied from ~10-540 km/s. The faster and slower EUV wavefronts were observed in front of the plasma blob during its impulsive acceleration phase. The faster EUV wave propagated with a speed of ~785 to 1020 km/s, whereas the slower wavefront speed varied in between ~245 and 465 km/s. The timing and speed of the faster wave match the shock speed estimated from the drift rate of the associated type II radio burst. The faster wave experiences a reflection by the nearby AR NOAA 11177. In addition, secondary waves were observed (only in the 171 \AA channel), when the primary fast wave and plasma blob impacted the funnel-shaped coronal loops. The HMI magnetograms revealed the continuous emergence of new magnetic flux along with shear flows at the site of the blob formation. It is inferred that the emergence of twisted magnetic fields in the form of arch-filaments/"anemone-type" loops is the likely cause for the plasma blob formation and associated eruption along with the triggering of M-class flare. Furthermore, the faster EUV wave formed ahead of the blob shows the signature of fast-mode MHD wave, whereas the slower wave seems to be generated by the field line compression by the plasma blob. The secondary wave trains originated from the funnel-shaped loops are probably the fast magnetoacoustic waves.Comment: A&A (in press), 22 pages, 13 figure

    Friedmann model with viscous cosmology in modified f(R,T)f(R,T) gravity theory

    Get PDF
    In this paper, we introduce bulk viscosity in the formalism of modified gravity theory in which the gravitational action contains a general function f(R,T)f(R,T), where RR and TT denote the curvature scalar and the trace of the energy-momentum tensor, respectively within the framework of a flat Friedmann-Robertson-Walker model. As an equation of state for prefect fluid, we take p=(γ1)ρp=(\gamma-1)\rho, where 0γ20 \leq \gamma \leq 2 and viscous term as a bulk viscosity due to isotropic model, of the form ζ=ζ0+ζ1H\zeta =\zeta_{0}+\zeta_{1}H, where ζ0\zeta_{0} and ζ1\zeta_{1} are constants, and HH is the Hubble parameter. The exact non-singular solutions to the corresponding field equations are obtained with non- viscous and viscous fluids, respectively by assuming a simplest particular model of the form of f(R,T)=R+2f(T)f(R,T) = R+2f(T), where f(T)=αTf(T)=\alpha T ( α\alpha is a constant). A big-rip singularity is also observed for γ<0\gamma<0 at a finite value of cosmic time under certain constraints. We study all possible scenarios with the possible positive and negative ranges of α\alpha to analyze the expansion history of the universe. It is observed that the universe accelerates or exhibits transition from decelerated phase to accelerated phase under certain constraints of ζ0\zeta_0 and ζ1\zeta_1. We compare the viscous models with the non-viscous one through the graph plotted between scale factor and cosmic time and find that bulk viscosity plays the major role in the expansion of the universe. A similar graph is plotted for deceleration parameter with non-viscous and viscous fluids and find a transition from decelerated to accelerated phase with some form of bulk viscosity.Comment: 19 pages, 3 figures, the whole paper has been revised to improve the quality of paper. Some references added. arXiv admin note: text overlap with arXiv:1307.4262 by other author
    corecore