63 research outputs found
Differential modulatory effects of GSK-3β and HDM2 on sorafenib-induced AIF nuclear translocation (programmed necrosis) in melanoma
<p>Abstract</p> <p>Background</p> <p>GSK-3β phosphorylates numerous substrates that govern cell survival. It phosphorylates p53, for example, and induces its nuclear export, HDM2-dependent ubiquitination, and proteasomal degradation. GSK-3β can either enhance or inhibit programmed cell death, depending on the nature of the pro-apoptotic stimulus. We previously showed that the multikinase inhibitor sorafenib activated GSK-3β and that this activation attenuated the cytotoxic effects of the drug in various BRAF-mutant melanoma cell lines. In this report, we describe the results of studies exploring the effects of GSK-3β on the cytotoxicity and antitumor activity of sorafenib combined with the HDM2 antagonist MI-319.</p> <p>Results</p> <p>MI-319 alone increased p53 levels and p53-dependent gene expression in melanoma cells but did not induce programmed cell death. Its cytotoxicity, however, was augmented in some melanoma cell lines by the addition of sorafenib. In responsive cell lines, the MI-319/sorafenib combination induced the disappearance of p53 from the nucleus, the down modulation of Bcl-2 and Bcl-x<sub>L</sub>, the translocation of p53 to the mitochondria and that of AIF to the nuclei. These events were all GSK-3β-dependent in that they were blocked with a GSK-3β shRNA and facilitated in otherwise unresponsive melanoma cell lines by the introduction of a constitutively active form of the kinase (GSK-3β-S9A). These modulatory effects of GSK-3β on the activities of the sorafenib/MI-319 combination were the exact reverse of its effects on the activities of sorafenib alone, which induced the down modulation of Bcl-2 and Bcl-x<sub>L </sub>and the nuclear translocation of AIF only in cells in which GSK-3β activity was either down modulated or constitutively low. In A375 xenografts, the antitumor effects of sorafenib and MI-319 were additive and associated with the down modulation of Bcl-2 and Bcl-x<sub>L</sub>, the nuclear translocation of AIF, and increased suppression of tumor angiogenesis.</p> <p>Conclusions</p> <p>Our data demonstrate a complex partnership between GSK-3β and HDM2 in the regulation of p53 function in the nucleus and mitochondria. The data suggest that the ability of sorafenib to activate GSK-3β and alter the intracellular distribution of p53 may be exploitable as an adjunct to agents that prevent the HDM2-dependent degradation of p53 in the treatment of melanoma.</p
Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis
The effects of sorafenib – an oral multikinase inhibitor targeting the tumour and tumour vasculature – were evaluated in patients with advanced melanoma enrolled in a large multidisease Phase II randomised discontinuation trial (RDT). Enrolled patients received a 12-week run-in of sorafenib 400 mg twice daily (b.i.d.). Patients with changes in bi-dimensional tumour measurements <25% from baseline were then randomised to sorafenib or placebo for a further 12 weeks (ie to week 24). Patients with ⩾25% tumour shrinkage after the run-in continued on open-label sorafenib, whereas those with ⩾25% tumour growth discontinued treatment. This analysis focussed on secondary RDT end points: changes in bi-dimensional tumour measurements from baseline after 12 weeks and overall tumour responses (WHO criteria) at week 24, progression-free survival (PFS), safety and biomarkers (BRAF, KRAS and NRAS mutational status). Of 37 melanoma patients treated during the run-in phase, 34 were evaluable for response: one had ⩾25% tumour shrinkage and remained on open-label sorafenib; six (16%) had <25% tumour growth and were randomised (placebo, n=3; sorafenib, n=3); and 27 had ⩾25% tumour growth and discontinued. All three randomised sorafenib patients progressed by week 24; one remained on sorafenib for symptomatic relief. All three placebo patients progressed by week-24 and were re-started on sorafenib; one experienced disease re-stabilisation. Overall, the confirmed best responses for each of the 37 melanoma patients who received sorafenib were 19% stable disease (SD) (ie n=1 open-label; n=6 randomised), 62% (n=23) progressive disease (PD) and 19% (n=7) unevaluable. The overall median PFS was 11 weeks. The six randomised patients with SD had overall PFS values ranging from 16 to 34 weeks. The most common drug-related adverse events were dermatological (eg rash/desquamation, 51%; hand-foot skin reaction, 35%). There was no relationship between V600E BRAF status and disease stability. DNA was extracted from the biopsies of 17/22 patients. Six had V600E-positive tumours (n=4 had PD; n=1 had SD; n=1 unevaluable for response), and 11 had tumours containing wild-type BRAF (n=9 PD; n=1 SD; n=1 unevaluable for response). In conclusion, sorafenib is well tolerated but has little or no antitumour activity in advanced melanoma patients as a single agent at the dose evaluated (400 mg b.i.d.). Ongoing trials in advanced melanoma are evaluating sorafenib combination therapies
Apoptosis of human melanoma cells induced by inhibition of B-RAFV600E involves preferential splicing of bimS
Bim is known to be critical in killing of melanoma cells by inhibition of the RAF/MEK/ERK pathway. However, the potential role of the most potent apoptosis-inducing isoform of Bim, BimS, remains largely unappreciated. Here, we show that inhibition of the mutant B-RAFV600E triggers preferential splicing to produce BimS, which is particularly important in induction of apoptosis in B-RAFV600E melanoma cells. Although the specific B-RAFV600E inhibitor PLX4720 upregulates all three major isoforms of Bim, BimEL, BimL, and BimS, at the protein and mRNA levels in B-RAFV600E melanoma cells, the increase in the ratios of BimS mRNA to BimEL and BimL mRNA indicates that it favours BimS splicing. Consistently, enforced expression of B-RAFV600E in wild-type B-RAF melanoma cells and melanocytes inhibits BimS expression. The splicing factor SRp55 appears necessary for the increase in BimS splicing, as SRp55 is upregulated, and its inhibition by small interfering RNA blocks induction of BimS and apoptosis induced by PLX4720. The PLX4720-induced, SRp55-mediated increase in BimS splicing is also mirrored in freshly isolated B-RAFV600E melanoma cells. These results identify a key mechanism for induction of apoptosis by PLX4720, and are instructive for sensitizing melanoma cells to B-RAFV600E inhibitors
Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations
<p>Abstract</p> <p>Background</p> <p>Thyroid carcinomas show a high prevalence of mutations in the oncogene BRAF which are inversely associated with RAS or RET/PTC oncogenic activation. The possibility of using inhibitors on the BRAF pathway as became an interesting therapeutic approach. In thyroid cancer cells the target molecules, implicated on the cellular effects, mediated by inhibition of BRAF are not well established. In order to fill this lack of knowledge we studied the proliferation and survival pathways and associated molecules induced by BRAF inhibition in thyroid carcinoma cell lines harbouring distinct genetic backgrounds.</p> <p>Methods</p> <p>Suppression of BRAF pathway in thyroid cancer cell lines (8505C, TPC1 and C643) was achieved using RNA interference (RNAi) for BRAF and the kinase inhibitor, sorafenib. Proliferation analysis was performed by BrdU incorporation and apoptosis was accessed by TUNEL assay. Levels of protein expression were analysed by western-blot.</p> <p>Results</p> <p>Both BRAF RNAi and sorafenib inhibited proliferation in all the cell lines independently of the genetic background, mostly in cells with BRAF<sup>V600E </sup>mutation. In BRAF<sup>V600E </sup>mutated cells inhibition of BRAF pathway lead to a decrease in ERK1/2 phosphorylation and cyclin D1 levels and an increase in p27<sup>Kip1</sup>. Specific inhibition of BRAF by RNAi in cells with BRAF<sup>V600E </sup>mutation had no effect on apoptosis. In the case of sorafenib treatment, cells harbouring BRAF<sup>V600E </sup>mutation showed increase levels of apoptosis due to a balance of the anti-apoptotic proteins Mcl-1 and Bcl-2.</p> <p>Conclusion</p> <p>Our results in thyroid cancer cells, namely those harbouring BRAF<sup>V600E</sup>mutation showed that BRAF signalling pathway provides important proliferation signals. We have shown that in thyroid cancer cells sorafenib induces apoptosis by affecting Mcl-1 and Bcl-2 in BRAF<sup>V600E </sup>mutated cells which was independent of BRAF. These results suggest that sorafenib may prove useful in the treatment of thyroid carcinomas, particularly those refractory to conventional treatment and harbouring BRAF mutations.</p
Upregulation of calcium-sensing receptor and mitogen-activated protein kinase signalling in the regulation of growth and differentiation in colon carcinoma
In the present study, we demonstrate that Ca2+-induced growth inhibition and induction of differentiation in a line of human colon carcinoma cells (CBS) is dependent on mitogen-activated protein (MAP) kinase signaling and is associated with upregulation of extracellular calcium-sensing receptor (CaSR) expression. When CBS cells were grown in Ca2+-free medium and then switched to medium supplemented with 1.4 mM Ca2+, proliferation was reduced and morphologic features of differentiation were expressed. E-cadherin, which was minimally expressed in nonsupplemented medium, was rapidly induced in response to Ca2+ stimulation. Sustained activation of the extracellular signal-regulated kinase (ERK) occured in Ca2+-supplemented medium. When an inhibitor of ERK activation (10 μM U0126) was included in the Ca2+-supplemented culture medium, ERK-activation did not occur. Concomitantly, E-cadherin was not induced, cell proliferation remained high and differentiation was not observed. The same level of Ca2+ supplementation that induced MAP kinase activation also stimulated CaSR upregulation in CBS cells. A clonal isolate of the CBS line that did not upregulate CaSR expression in response to extracellular Ca2+ was isolated from the parent cells. This isolate failed to produce E-cadherin or undergo growth inhibition/induction of differentiation when exposed to Ca2+ in the culture medium. However, ERK-activation occurred as efficiently in this isolate as in parent CBS cells or in a cloned isolate that underwent growth reduction and differentiation in response to Ca2+ stimulation. Together, these data indicate that CaSR upregulation and MAP kinase signalling are both intermediates in the control of colon carcinoma cell growth and differentiation. They appear to function, at least in part, independently of one another
Inhibition of IGF-1R-dependent PI3K activation sensitizes colon cancer cells specifically to DR5-mediated apoptosis but not to rhTRAIL
Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) initiates apoptosis in tumor cells upon binding to its cognate agonistic receptors, death receptors 4 and 5 (DR4 and DR5). The activity of the insulin-like growth factor 1 (IGF-1) survival pathway is often increased in cancer, influencing both cell proliferation and apoptosis. We hypothesized that inhibiting the IGF-1 receptor (IGF-1R) using NVP-AEW541, a small molecular weight tyrosine kinase inhibitor of the IGF-1R, could increase death receptor (DR)-mediated apoptosis in colon cancer cells
A novel form of constitutively active farnesylated Akt1 prevents mammary epithelial cells from anoikis and suppresses chemotherapy-induced apoptosis
Protein kinase B/Akt has been described as a central mediator of anti-apoptotic signals transduced by the PI3 kinase. Although the role of Akt in the suppression of apoptosis is well elucidated, a potential function of Akt in tumorigenesis and chemoresistance is less intensively documented. In this study, we describe the construction of a novel form of constitutively active Akt1, which relies on the deletion of its pleckstrin homology domain and the insertion of a C-terminal farnesylation sequence. Stable cell lines were generated with MCF10A mammary epithelial cells and A549 human NSCLC cells expressing constitutively active Akt1. Enigneered MCF10A cells were rendered resistant towards apoptosis resulting from loss of cellular substrate attachment (anoikis). We investigated the chemosensitivity of A549 cells expressing farnesylated Akt vs control cells. A profoundly decreased sensitivity towards Mitoxantrone and cisplatin was observed in cells expressing farnesylated Akt. No significant difference in sensitivity however was observed upon treatment with cell cycle specific chemotherapeutic agents like paclitaxel. Our data suggest, that Akt is a central mediator in the suppression of anoikis and modulation of chemotherapy-induced apoptosis. Therefore it represents a promising target for small molecule inhibitors to shift the apoptotic threshold in cancer cells after treatment with standard chemotherapy
RAF Kinase Activity Regulates Neuroepithelial Cell Proliferation and Neuronal Progenitor Cell Differentiation during Early Inner Ear Development
Background: Early inner ear development requires the strict regulation of cell proliferation, survival, migration and differentiation, coordinated by the concerted action of extrinsic and intrinsic factors. Deregulation of these processes is associated with embryonic malformations and deafness. We have shown that insulin-like growth factor I (IGF-I) plays a key role in embryonic and postnatal otic development by triggering the activation of intracellular lipid and protein kinases. RAF kinases are serine/threonine kinases that regulate the highly conserved RAS-RAF-MEK-ERK signaling cascade involved in transducing the signals from extracellular growth factors to the nucleus. However, the regulation of RAF kinase activity by growth factors during development is complex and still not fully understood.
Methodology/Principal Findings: By using a combination of qRT-PCR, Western blotting, immunohistochemistry and in situ hybridization, we show that C-RAF and B-RAF are expressed during the early development of the chicken inner ear in specific spatiotemporal patterns. Moreover, later in development B-RAF expression is associated to hair cells in the sensory patches. Experiments in ex vivo cultures of otic vesicle explants demonstrate that the influence of IGF-I on proliferation but not survival depends on RAF kinase activating the MEK-ERK phosphorylation cascade. With the specific RAF inhibitor Sorafenib, we show that blocking RAF activity in organotypic cultures increases apoptosis and diminishes the rate of cell proliferation in the otic epithelia, as well as severely impairing neurogenesis of the acoustic-vestibular ganglion (AVG) and neuron maturation.
Conclusions/Significance: We conclude that RAF kinase activity is essential to establish the balance between cell proliferation and death in neuroepithelial otic precursors, and for otic neuron differentiation and axonal growth at the AVG
Signaling through the TRAIL receptor DR5/FADD pathway plays a role in the apoptosis associated with skeletal myoblast differentiation
Apoptosis rather than differentiation is a physiological process during myogenesis and muscle regeneration. When cultured myoblasts were induced to differentiate, we detected an increase in caspase 8 activity. Pharmacological inhibition of caspase 8 activity decreased apoptosis. Expression of a dominant-negative mutant of the adapter protein FADD also abrogated apoptosis, implicating a death ligand pathway. Treatment with TRAIL, but not Fas, induced apoptosis in these myoblasts. Accordingly, treatment with a soluble TRAIL decoy receptor or expression of a dominant-negative mutant of the TRAIL receptor DR5 abrogated apoptosis. While TRAIL expression levels remained unaltered in apoptotic myoblasts, DR5 expression levels increased. Finally, we also detected a reduction in FLIP, a death-receptor effector protein and caspase 8 competitive inhibitor, to undetectable levels in apoptotic myoblasts. Thus, our data demonstrate an important role for the TRAIL/DR5/FADD/caspase 8 pathway in the apoptosis associated with skeletal myoblast differentiation. Identifying the functional apoptotic pathways in skeletal myoblasts may prove useful in minimizing the myoblast apoptosis that contributes pathologically to a variety of diseases and in minimizing the apoptosis of transplanted myoblasts to treat these and other disease states
- …