2,146 research outputs found

    Simple and Realistic Composite Higgs Models in Flat Extra Dimensions

    Get PDF
    We construct new composite Higgs/gauge-Higgs unification (GHU) models in flat space that overcome all the difficulties found in the past in attempting to construct models of this sort. The key ingredient is the introduction of large boundary kinetic terms for gauge (and fermion) fields. We focus our analysis on the electroweak symmetry breaking pattern and the electroweak precision tests and show how both are compatible with each other. Our models can be seen as effective TeV descriptions of analogue warped models. We point out that, as far as electroweak TeV scale physics is concerned, one can rely on simple and more flexible flat space models rather than considering their unavoidably more complicated warped space counterparts. The generic collider signatures of our models are essentially undistinguishable from those expected from composite Higgs/warped GHU models, namely a light Higgs, colored fermion resonances below the TeV scale and sizable deviations to the Higgs and top coupling.Comment: 30 figures, 9 figures; v2: minor improvements, one reference added, version to appear in JHE

    Experimental performance comparison between circular and elliptical tubes in evaporative condensers

    Get PDF
    In refrigeration systems, evaporative condensers have two main advantages compared to other condensation heat exchangers: They operate at lower condensation temperature than traditional air-cooled condensers and require a lower quantity of water and pumping power compared to evaporative towers. The heat and mass transfer that occur on tube batteries are difficult to study. The aim of this work is to apply an experimental approach to investigate the performance of an evaporative condenser on a reduced scale by means of a test bench, consisting of a transparent duct with a rectangular test section in which electric heaters, inside elliptical pipes (major axis 32 mm, minor axis 23 mm), simulate the presence of the refrigerant during condensation. By keeping the water conditions fixed and constant, the operating conditions of the air and the inclination of the heat transfer geometry were varied, and this allowed to carry out a sensitivity analysis, depending on some of the main parameters that influence the thermo-fluid dynamic phenomena, as well as a performance comparison. The results showed that the heat transfer increases with the tube surface exposed directly to the air as a result of the increase in their inclination, that has been varied in the range 0–20°. For the investigated conditions, the average increase, resulting by the inclination, is 28%

    Thermal Modeling of a Historical Building Wall: Using Long-Term Monitoring Data to Understand the Reliability and the Robustness of Numerical Simulations

    Get PDF
    Thermal modeling of building components plays a crucial role in designing energy efficiency measures, assessing living comfort, and preventing building damages. The accuracy of the modeling process strongly depends on the reliability of the physical models and the correct selection of input parameters, especially for historic buildings where uncertainties on wall composition and material properties are higher. This work evaluates the reliability of building thermal modeling and identifies the input parameters that most affect the simulation results. A monitoring system is applied to a historic building wall to measure the temperature profile. The long-term dataset is compared with the result of a simulation model. A sensitivity analysis is applied for the determination of the influential input parameters. A two-step optimization is performed to calibrate the numerical model: the first optimization step is based on an optimized selection of the database materials, while the second optimization step uses a particle swarm algorithm. The results indicate that the output of the simulation model is largely influenced by the coefficients describing the coupling with the boundary conditions and by the thermal conductivities of the materials. Very good results are obtained already after the first optimization step ((Formula presented.) while the second optimization step improves further the agreement ((Formula presented.). The parameter values reported in the datasheets do not match those found through optimization. Even with extensive optimization using an algorithm, starting with monitoring data is insufficient to identify material parameter values

    Metabolic syndrome and postmenopausal breast cancer in the ORDET cohort : a nested case-control study

    Get PDF
    Background and aims: The increase in breast cancer incidence over recent decades has been accompanied by an increase in the frequency of metabolic syndrome. Several studies suggest that breast cancer risk is associated with the components of metabolic syndrome (high serum glucose and triglycerides, low HDL-cholesterol, high blood pressure, and abdominal obesity), but no prospective study has investigated risk in relation to the presence of explicitly defined metabolic syndrome. We investigated associations between metabolic syndrome, its components, and breast cancer risk in a nested case-control study on postmenopausal women of the ORDET cohort. Methods and results: After a median follow-up of 13.5 years, 163 women developed breast cancer; metabolic syndrome was present in 29.8%. Four matched controls per case were selected by incidence density sampling, and rate ratios were estimated by conditional logistic regression. Metabolic syndrome (i.e. presence of three or more metabolic syndrome components) was significantly associated with breast cancer risk (rate ratio 1.58 [95% confidence interval 1.07-2.33]), with a significant risk increase for increasing number of components (P for trend 0.004). Among individual metabolic syndrome components, only low serum HDL-cholesterol and high triglycerides were significantly associated with increased risk. Conclusions: This prospective study indicates that metabolic syndrome is an important risk factor for breast cancer in postmenopausal women. Although serum HDL-cholesterol and triglycerides had the strongest association with breast cancer, all components may contribute to increased risk by multiple interacting mechanisms. Prevention or reversal of metabolic syndrome by life-style changes may be effective in preventing breast cancer in postmenopausal women

    Eco-Sustainable Energy Production in Healthcare: Trends and Challenges in Renewable Energy Systems

    Get PDF
    The shift from fossil fuels to renewable energy systems represents a pivotal step toward the realization of a sustainable society. This study aims to analyze representative scientific literature on eco-sustainable energy production in the healthcare sector, particularly in hospitals. Given hospitals’ substantial electricity consumption, the adoption of renewable energy offers a reliable, low-CO2 emission solution. The COVID-19 pandemic has underscored the urgency for energy-efficient and environmentally-responsible approaches. This brief review analyzes the development of experimental, simulation, and optimization projects for sustainable energy production in healthcare facilities. The analysis reveals trends and challenges in renewable energy systems, offering valuable insights into the potential of eco-sustainable solutions in the healthcare sector. The findings indicate that hydrogen storage systems are consistently coupled with photovoltaic panels or solar collectors, but only 14% of the analyzed studies explore this potential within hospital settings. Hybrid renewable energy systems (HRES) could be used to meet the energy demands of healthcare centers and hospitals. However, the integration of HRES in hospitals and medical buildings is understudied

    Improving Effective Surgical Delivery in Humanitarian Disasters: Lessons from Haiti

    Get PDF
    Kathryn Chu and colleagues describe the experiences of Médecins sans Frontières after the 2010 Haiti earthquake, and discuss how to improve delivery of surgery in humanitarian disasters

    Variation of the chemical and biological properties of a Technosol during seven years after a single application of compost

    Get PDF
    Technosols are composed of natural soils mixed with artificial materials and can be an inhospitable environment for the soil microbial community. The main goal of the current research was to evaluate temporal variations of Technosol quality through an integrated approach, considering all of the evaluated chemical, physical and biological characteristics for a period of seven years after a single application of compost. The soil samples were evaluated using the following parameters: pH; water content; water holding capacity; bulk density; porosity; organic matter and N contents; C/N ratio; fungal biomass; microbial biomass; respiration; metabolic quotient (qCO 2 ); and endogenous mineralisation coefficient (CEM). The overall evaluation showed that a single application of compost improved the soil quality in the short term. A decrease in Technosol quality over the long term appears to be due to deterioration of the physical and chemical properties, rather than a change in biological properties

    Weak Mixing Angle and Higgs Mass in Gauge-Higgs Unification Models with Brane Kinetic Terms

    Full text link
    We show that the idea of Gauge-Higgs unification(GHU) can be rescued from the constraint of weak mixing angle by introducing localized brane kinetic terms in higher dimensional GHU models with bulk and simple gauge groups. We find that those terms lead to a ratio between Higgs and W boson masses, which is a little bit deviated from the one derived in the standard model. From numerical analysis, we find that the current lower bound on the Higgs mass tends to prefer to exceptional groups E(6), E(7), E(8) rather than other groups like SU(3l), SO(2n+1), G(2), and F(4) in 6-dimensional(D) GHU models irrespective of the compactification scales. For the compactification scale below 1 TeV, the Higgs masses in 6D GHU models with SU(3l), SO(2n+1), G(2), and F(4) groups are predicted to be less than the current lower bound unless a model parameter responsible for re-scaling SU(2) gauge coupling is taken to be unnaturally large enough. To see how the situation is changed in more higher dimensional GHU model, we take 7D S^{3}/ Z_{2} and 8D T^{4}/ Z_{2} models. It turns out from our numerical analysis that these higher dimensional GHU models with gauge groups except for E(6) can lead to the Higgs boson whose masses are predicted to be above the current lower bound only for the compatification scale above 1 TeV without taking unnaturally large value of the model parameter, whereas the Higgs masses in the GHU models with E(6) are compatible with the current lower bound even for the compatification scale below 1 TeV.Comment: 22 pages, 4 figure
    • …
    corecore