7,081 research outputs found

    A Hybrid Quantum Encoding Algorithm of Vector Quantization for Image Compression

    Full text link
    Many classical encoding algorithms of Vector Quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45sqrt(N) times approximately. In this paper, a hybrid quantum VQ encoding algorithm between classical method and quantum algorithm is presented. The number of its operations is less than sqrt(N) for most images, and it is more efficient than the pure quantum algorithm. Key Words: Vector Quantization, Grover's Algorithm, Image Compression, Quantum AlgorithmComment: Modify on June 21. 10pages, 3 figure

    Critical Nature of Non-Fermi Liquid in Spin 3/2 Multipolar Kondo Model

    Full text link
    A multipolar Kondo model of an impurity spin S_I=3/2 interacting with conduction electrons with spin s_c=3/2 is investigated using boundary conformal field theory. A two-channel Kondo (2CK) -like non-Fermi liquid (NFL) under the particle-hole symmetry is derived explicitly using a ``superspin absorption'' in the sector of a hidden symmetry, SO(5). We discuss the difference between the usual spin-1/2 2CK NFL fixed point and the present one. In particular, we find that, unlike the usual 2CK model, the low temperature impurity specific heat is proportional to temperature.Comment: 4 pages, 2 figure

    Inhomogeneous Nucleation of Quark-Gluon Plasma in High Energy Nuclear Collisions

    Get PDF
    We estimate the probability that a hard nucleon-nucleon collision is able to nucleate a seed of quark--gluon plasma in the surrounding hot and dense hadronic matter formed during a central collision of two large nuclei at AGS energies. The probability of producing at least one such seed is on the order of 1-100\%. We investigate the influence of quark--gluon plasma formation on the observed multiplicity distribution and find that it may lead to noticable structure in the form of a bump or shoulder.Comment: 16 pages, latex and 12 ps figures available on reques

    Solution of two channel spin-flavor Kondo model

    Full text link
    We investigate a model where an impurity couples to both the spin and the flavor currents of the two channel conduction electrons. This model can be used as a prototype model of a magnetic impurity tunneling between two sites in a metal and of some heavy fermion systems where the ground state of the impurity has a fourfold degeneracy. The system is shown to flow to a doubly degenerate non fermi-liquid(NFL) fixed point; the thermodynamic quantities show NFL behaviors, but the transport quantities show fermi liquid (FL) behaviors . A spin-flavor coupling double tensor term is shown to drive the system to one of the two singlet FL fixed points. The relation with SU(4) Coqblin-Schrieffer model is studied. The implications on the possible experiments are given.Comment: 11 pages, REVTEX, no figures. To appear in Phys. Rev. B (Rapid Comm.) July 1, 199

    Quantitative Analysis of Bloggers Collective Behavior Powered by Emotions

    Full text link
    Large-scale data resulting from users online interactions provide the ultimate source of information to study emergent social phenomena on the Web. From individual actions of users to observable collective behaviors, different mechanisms involving emotions expressed in the posted text play a role. Here we combine approaches of statistical physics with machine-learning methods of text analysis to study emergence of the emotional behavior among Web users. Mapping the high-resolution data from digg.com onto bipartite network of users and their comments onto posted stories, we identify user communities centered around certain popular posts and determine emotional contents of the related comments by the emotion-classifier developed for this type of texts. Applied over different time periods, this framework reveals strong correlations between the excess of negative emotions and the evolution of communities. We observe avalanches of emotional comments exhibiting significant self-organized critical behavior and temporal correlations. To explore robustness of these critical states, we design a network automaton model on realistic network connections and several control parameters, which can be inferred from the dataset. Dissemination of emotions by a small fraction of very active users appears to critically tune the collective states

    Transport properties of one-dimensional interacting fermions in aperiodic potentials

    Full text link
    Motivated by the existence of metal-insulator transition in one-dimensional non-interacting fermions in quasiperiodic and pseudorandom potentials, we studied interacting spinless fermion models using exact many-body Lanczos diagonalization techniques. Our main focus was to understand the effect of the fermion-fermion interaction on the transport properties of aperiodic systems. We calculated the ground state energy and the Kohn charge stiffness Dc. Our numerical results indicate that there exists a region in the interaction strength parameter space where the system may behave differently from the metallic and insulating phases. This intermediate phase may be characterized by a power law scaling of the charge stiffness constant in contrast to the localized phase where Dc scales exponentially with the size of the system.Comment: 11 pages LaTex document with 5 eps figures. Uses revtex style file

    Singular Effects of Impurities near the Ferromagnetic Quantum-Critical Point

    Full text link
    Systematic theoretical results for the effects of a dilute concentration of magnetic impurities on the thermodynamic and transport properties in the region around the quantum critical point of a ferromagnetic transition are obtained. In the quasi-classical regime, the dynamical spin fluctuations enhance the Kondo temperature. This energy scale decreases rapidly in the quantum fluctuation regime, where the properties are those of a line of critical points of the multichannel Kondo problem with the number of channels increasing as the critical point is approached, except at unattainably low temperatures where a single channel wins out.Comment: 4 pages, 2 figure

    Charge Kondo effect toward a non-Fermi-liquid fixed point in the orbitally degenerate exchange model

    Full text link
    We show that a Kondo-type model with an orbital degeneracy has a new non-Fermi-liquid fixed point. Near the fixed point the spin degrees of freedom are completely quenched, and the residual charge degrees of freedom lead to the multi-channel Kondo effect. Anomalous behavior appears in electric and thermal properties, but the magnetic susceptibility should show the local Fermi-liquid behavior. The non-Fermi-liquid fixed point becomes unstable against perturbations breaking the particle-hole symmetry. We derive these results using the third-order scaling for a spherically symmetric model with a fictitious spin. In contrast to the Coqblin-Schrieffer model, the present model respects different time-reversal properties of multipole operators.Comment: 4 pages, 2 eps figures, to appear in J. Phys. Soc. Jpn. 68 No.

    Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER's PSR J0740+6620 Measurement

    Get PDF
    In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4 M⊙, probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4 M⊙ NS to be 11.94-0.87+0.76 km at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs

    Remnants of Initial Anisotropic High Energy Density Domains in Nucleus-Nucleus Collisions

    Get PDF
    Anisotropic high energy density domains may be formed at early stages of ultrarelativistic heavy ion collisions, e.g. due to phase transition dynamics or non-equilibrium phenomena like (mini-)jets. Here we investigate hadronic observables resulting from an initially created anisotropic high energy density domain. Based on our studies using a transport model we find that the initial anisotropies are reflected in the freeze-out multiplicity distribution of both pions and kaons due to secondary hadronic rescattering. The anisotropy appears to be stronger for particles at high transverse momenta. The overall kaon multiplicity increases with large fluctuations of local energy densities, while no change has been found in the pion multiplicity.Comment: Submitted to PR
    • …
    corecore