857 research outputs found

    ECG Round: A lady with dyspnoea for 2 days

    Get PDF
    published_or_final_versio

    A γA-Crystallin Mouse Mutant Secc with Small Eye, Cataract and Closed Eyelid

    Get PDF
    published_or_final_versio

    Analytical study on holographic superconductors in external magnetic field

    Full text link
    We investigate the holographic superconductors immersed in an external magnetic field by using the analytical approach. We obtain the spatially dependent condensate solutions in the presence of the magnetism and find analytically that the upper critical magnetic field satisfies the relation given in the Ginzburg-Landau theory. We observe analytically the reminiscent of the Meissner effect where the magnetic field expels the condensate. Extending to the D-dimensional Gauss-Bonnet AdS black holes, we examine the influence given by the Gauss-Bonnet coupling on the condensation. Different from the positive coupling, we find that the negative Gauss-Bonnet coupling enhances the condensation when the external magnetism is not strong enough.Comment: revised version, to appear in JHE

    On Charged Lifshitz Black Holes

    Full text link
    We obtain exact solutions of charged asymptotically Lifshitz black holes in arbitrary (d+2) dimensions, generalizing the four dimensional solution investigated in 0908.2611[hep-th]. We find that both the conventional Hamiltonian approach and the recently proposed method for defining mass in non-relativistic backgrounds do not work for this specific example. Thus the mass of the black hole can only be determined by the first law of thermodynamics. We also obtain perturbative solutions in five-dimensional Gauss-Bonnet gravity. The ratio of shear viscosity over entropy density and the DC conductivity are calculated in the presence of Gauss-Bonnet corrections.Comment: 24 pages, no figures, to appear in JHE

    Lifshitz black holes in string theory

    Full text link
    We provide the first black hole solutions with Lifshitz asymptotics found in string theory. These are expected to be dual to models enjoying anisotropic scale invariance with dynamical exponent z=2 at finite temperature. We employ a consistent truncation of type IIB supergravity to four dimensions with an arbitrary 5-dimensional Einstein manifold times a circle as internal geometry. New interesting features are found that significantly differ from previous results in phenomenological models. In particular, small black holes are shown to be thermodynamically unstable, analogously to the usual AdS-Schwarzschild black holes, and extremality is never reached. This signals a possible Hawking-Page like phase transition at low temperatures.Comment: 19 pages, 7 figures. v2 references adde

    Black Hole Thermodynamics and Heavy Fermion Metals

    Full text link
    Heavy fermion alloys at critical doping typically exhibit non-Fermi-liquid behavior at low temperatures, including a logarithmic or power law rise in the ratio of specific heat to temperature as the temperature is lowered. Anomalous specific heat of this type is also observed in a simple class of gravitational dual models that exhibit anisotropic scaling with dynamical critical exponent z > 1.Comment: 17 pages, 4 figures; v2: added references; v3: matches published versio

    Lovelock-Lifshitz Black Holes

    Full text link
    In this paper, we investigate the existence of Lifshitz solutions in Lovelock gravity, both in vacuum and in the presence of a massive vector field. We show that the Lovelock terms can support the Lifshitz solution provided the constants of the theory are suitably chosen. We obtain an exact black hole solution with Lifshitz asymptotics of any scaling parameter zz in both Gauss-Bonnet and in pure 3rd order Lovelock gravity. If matter is added in the form of a massive vector field, we also show that Lifshitz solutions in Lovelock gravity exist; these can be regarded as corrections to Einstein gravity coupled to this form of matter. For this form of matter we numerically obtain a broad range of charged black hole solutions with Lifshitz asymptotics, for either sign of the cosmological constant. We find that these asymptotic Lifshitz solutions are more sensitive to corrections induced by Lovelock gravity than are their asymptotic AdS counterparts. We also consider the thermodynamics of the black hole solutions and show that the temperature of large black holes with curved horizons is proportional to r0zr_0^z where zz is the critical exponent; this relationship holds for black branes of any size. As is the case for asymptotic AdS black holes, we find that an extreme black hole exists only for the case of horizons with negative curvature. We also find that these Lovelock-Lifshitz black holes have no unstable phase, in contrast to the Lovelock-AdS case. We also present a class of rotating Lovelock-Lifshitz black holes with Ricci-flat horizons.Comment: 26 pages, 10 figures, a few references added, typo fixed and some comments have been adde

    A M\"ossbauer study of the magneto-structural coupling effect in SrFe2_2As2_2 and SrFeAsF

    Full text link
    In the present paper, we report a comparison study of SrFe2_2As2_2 and SrFeAsF using M\"ossbauer spectroscopy. The temperature dependence of the magnetic hyperfine field is fitted with a modified Bean-Rodbell model. The results give much smaller magnetic moment and magneto-structural coupling effect for SrFeAsF, which may be understood as due to different inter-layer properties of the two compounds.Comment: 4 pages, 2 figures,conference ICAME2011, to be appear in Hyperfine Interaction

    Non-conformal Hydrodynamics in Einstein-dilaton Theory

    Full text link
    In the Einestein-dilaton theory with a Liouville potential parameterized by η\eta, we find a Schwarzschild-type black hole solution. This black hole solution, whose asymptotic geometry is described by the warped metric, is thermodynamically stable only for 0≤η<20 \le \eta < 2. Applying the gauge/gravity duality, we find that the dual gauge theory represents a non-conformal thermal system with the equation of state depending on η\eta. After turning on the bulk vector fluctuations with and without a dilaton coupling, we calculate the charge diffusion constant, which indicates that the life time of the quasi normal mode decreases with η\eta. Interestingly, the vector fluctuation with the dilaton coupling shows that the DC conductivity increases with temperature, a feature commonly found in electrolytes.Comment: 27 pages and 2 figures, published in JHE

    Zero Sound in Effective Holographic Theories

    Full text link
    We investigate zero sound in DD-dimensional effective holographic theories, whose action is given by Einstein-Maxwell-Dilaton terms. The bulk spacetimes include both zero temperature backgrounds with anisotropic scaling symmetry and their near-extremal counterparts obtained in 1006.2124 [hep-th], while the massless charge carriers are described by probe D-branes. We discuss thermodynamics of the probe D-branes analytically. In particular, we clarify the conditions under which the specific heat is linear in the temperature, which is a characteristic feature of Fermi liquids. We also compute the retarded Green's functions in the limit of low frequency and low momentum and find quasi-particle excitations in certain regime of the parameters. The retarded Green's functions are plotted at specific values of parameters in D=4D=4, where the specific heat is linear in the temperature and the quasi-particle excitation exists. We also calculate the AC conductivity in DD-dimensions as a by-product.Comment: 29 pages, 1 figur
    • …
    corecore