13,809 research outputs found

    A Hybrid Quantum Encoding Algorithm of Vector Quantization for Image Compression

    Full text link
    Many classical encoding algorithms of Vector Quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45sqrt(N) times approximately. In this paper, a hybrid quantum VQ encoding algorithm between classical method and quantum algorithm is presented. The number of its operations is less than sqrt(N) for most images, and it is more efficient than the pure quantum algorithm. Key Words: Vector Quantization, Grover's Algorithm, Image Compression, Quantum AlgorithmComment: Modify on June 21. 10pages, 3 figure

    Scanning Electron Microscopy of High-Modulus Polyethylene Fibres

    Get PDF
    Scanning electron microscopy (SEM) examination of high modulus polyethylene (HMPE) fibres gives rise to a number of artifacts which are here recognized. Antistatic agents may be successfully used for the observation of the woven fibres, but only in conjunction with an intermediate metallic coating. For isolated threads superior results are obtained with the metallic coating alone. New SEM evidence suggests that the high density of surface cracks produced by plasma treatment of HMPE fibres is associated with an aging process. This can also be activated by mechanical energy or storage at room conditions

    Are spectroscopic factors from transfer reactions consistent with asymptotic normalisation coefficients?

    Full text link
    It is extremely important to devise a reliable method to extract spectroscopic factors from transfer cross sections. We analyse the standard DWBA procedure and combine it with the asymptotic normalisation coefficient, extracted from an independent data set. We find that the single particle parameters used in the past generate inconsistent asymptotic normalization coefficients. In order to obtain a consistent spectroscopic factor, non-standard parameters for the single particle overlap functions can be used but, as a consequence, often reduced spectroscopic strengths emerge. Different choices of optical potentials and higher order effects in the reaction model are also studied. Our test cases consist of: 14^{14}C(d,p)15^{15}C(g.s.) at Edlab=14E_d^{lab}=14 MeV, 16^{16}O(d,p)17^{17}O(g.s.) at Edlab=15E_d^{lab}=15 MeV and 40^{40}Ca(d,p)41^{41}Ca(g.s.) at Edlab=11E_d^{lab}=11 MeV. We underline the importance of performing experiments specifically designed to extract ANCs for these systems.Comment: 15 pages, 12 figures, Phys. Rev. C (in press

    Inferring Unusual Crowd Events From Mobile Phone Call Detail Records

    Full text link
    The pervasiveness and availability of mobile phone data offer the opportunity of discovering usable knowledge about crowd behaviors in urban environments. Cities can leverage such knowledge in order to provide better services (e.g., public transport planning, optimized resource allocation) and safer cities. Call Detail Record (CDR) data represents a practical data source to detect and monitor unusual events considering the high level of mobile phone penetration, compared with GPS equipped and open devices. In this paper, we provide a methodology that is able to detect unusual events from CDR data that typically has low accuracy in terms of space and time resolution. Moreover, we introduce a concept of unusual event that involves a large amount of people who expose an unusual mobility behavior. Our careful consideration of the issues that come from coarse-grained CDR data ultimately leads to a completely general framework that can detect unusual crowd events from CDR data effectively and efficiently. Through extensive experiments on real-world CDR data for a large city in Africa, we demonstrate that our method can detect unusual events with 16% higher recall and over 10 times higher precision, compared to state-of-the-art methods. We implement a visual analytics prototype system to help end users analyze detected unusual crowd events to best suit different application scenarios. To the best of our knowledge, this is the first work on the detection of unusual events from CDR data with considerations of its temporal and spatial sparseness and distinction between user unusual activities and daily routines.Comment: 18 pages, 6 figure

    Quantum integrable system with two color components in two dimensions

    Full text link
    The Davey-Stewartson 1(DS1) system[9] is an integrable model in two dimensions. A quantum DS1 system with 2 colour-components in two dimensions has been formulated. This two-dimensional problem has been reduced to two one-dimensional many-body problems with 2 colour-components. The solutions of the two-dimensional problem under consideration has been constructed from the resulting problems in one dimensions. For latters with the δ\delta -function interactions and being solved by the Bethe ansatz, we introduce symmetrical and antisymmetrical Young operators of the permutation group and obtain the exact solutions for the quantum DS1 system. The application of the solusions is discussed.Comment: 14 pages, LaTeX fil
    • …
    corecore