1,603 research outputs found

    Simulation of Near Edge X-ray Absorption Fine Structure (NEXAFS) Measurements of CO on Supported Pd Nanoparticles

    Get PDF
    Near edge X-ray absorption fine structure (NEXAFS) measurements of CO on Pd nanoparticles have been simulated. This was achieved by calculating the CO π* resonance signal of CO on a nanoparticle both as a function of the angle of incidence (I vs θ) and the direction of the electric field vector E of the incident photon beam (I vs β), with the nanoparticle defined as a (111) top facet with {111} and {100} side facets. The dependence of the π* resonance intensity signal of CO covered nanoparticles on the particle geometry and orientation as well as the bond orientation of CO is examined. In addition, we compare our simulations to a set of C K-edge NEXAFS experimental data obtained from a single Pd nanoparticle decorated with CO. Our simulation predicts that the nanoparticle has a high lateral aspect ratio of 37.7 ± 4.1

    Probing the local electronic structure of the cross-linked (1×2) reconstruction of rutile TiO2(110)

    Get PDF
    The electronic structure of cross-linked TiO2(110)-(1×2) has been investigated using scanning tunneling spectroscopy (STS) and by monitoring changes in ultraviolet photoelectron spectroscopy (UPS) following exposure of the surface to O2. STS reveals two states located in the bandgap, at 0.7 and 1.5 eV below the Fermi level. The population of these two states varies over different parts of the (1×2)- reconstructed surface. An addition state at 1.1 eV above the Fermi level is observed at the double link part of the structure. All of the bandgap states are attenuated following exposure to O2, while the workfunction is increased. We attribute this to an electron transfer from the surface to the adsorbed oxygen

    Direct Visualization of Soliton CO Overlayers on Supported Pd Nanoparticles

    Get PDF
    The interaction of carbon monoxide (CO) molecules with the facets of noble metal nanoparticles forms the basis of many important catalytic reactions. Using scanning tunneling microscopy (STM), we have studied the adsorption of CO molecules on the (111) facets of Pd nanocrystals supported on a rutile TiO2(110) substrate. We observed four compact CO overlayers with coverages ranging between 0.5 and 0.6 monolayers. Examination of the positions of the CO molecules in each of the unit cells reveals that one of the overlayers has a rhombic (√7 × √7) R19.1°-4CO structure. The other three form rectangular structures, namely, (7 × √3) rect-8CO, c(5 × √3) rect-3CO, and c(9 × √3) rect-5CO. These are closely related via a soliton model previously proposed on the basis of infrared absorption spectroscopy and low-energy electron diffraction. By imaging the CO molecules, we provide direct evidence for the soliton model

    Opinion Mining on Non-English Short Text

    Full text link
    As the type and the number of such venues increase, automated analysis of sentiment on textual resources has become an essential data mining task. In this paper, we investigate the problem of mining opinions on the collection of informal short texts. Both positive and negative sentiment strength of texts are detected. We focus on a non-English language that has few resources for text mining. This approach would help enhance the sentiment analysis in languages where a list of opinionated words does not exist. We propose a new method projects the text into dense and low dimensional feature vectors according to the sentiment strength of the words. We detect the mixture of positive and negative sentiments on a multi-variant scale. Empirical evaluation of the proposed framework on Turkish tweets shows that our approach gets good results for opinion mining

    Variation of SMSI with the Au:Pd Ratio of Bimetallic Nanoparticles on TiO2(110)

    Get PDF
    Au/Pd nanoparticles are important in a number of catalytic processes. Here we investigate the formation of Au–Pd bimetallic nanoparticles on TiO 2 (110) and their susceptibility to encapsulation using scanning tunneling microscopy, as well as Auger spectroscopy and low energy electron diffraction. Sequentially depositing 5 MLE Pd and 1 MLE Au at 298 K followed by annealing to 573 K results in a bimetallic core and Pd shell, with TiO x encapsulation on annealing to ~ 800 K. Further deposition of Au on the pinwheel type TiO x layer results in a template-assisted nucleation of Au nanoclusters, while on the zigzag type TiO x layer no preferential adsorption site of Au was observed. Increasing the Au:Pd ratio to 3 MLE Pd and 2 MLE Au results in nanoparticles that are enriched in Au at their surface, which exhibit a strong resistance towards encapsulation. Hence the degree of encapsulation of the nanoparticles during sintering can be controlled by tuning the Au:Pd ratio

    Epstein-barr virus-encoded latent membrane protein 1 impairs G2 checkpoint in human nasopharyngeal epithelial cells through defective Chk1 activation

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a common cancer in Southeast Asia, particularly in southern regions of China. EBV infection is closely associated with NPC and has long been postulated to play an etiological role in the development of NPC. However, the role of EBV in malignant transformation of nasopharyngeal epithelial cells remains enigmatic. The current hypothesis of NPC development is that premalignant nasopharyngeal epithelial cells harboring genetic alterations support EBV infection and expression of EBV genes induces further genomic instability to facilitate the development of NPC. The latent membrane protein 1 (LMP1) is a well-documented EBV-encoded oncogene. The involvement of LMP1 in human epithelial malignancies has been implicated, but the mechanisms of oncogenic actions of LMP1, particularly in nasopharyngeal cells, are unclear. Here we observed that LMP1 expression in nasopharyngeal epithelial cells impaired G2 checkpoint, leading to formation of unrepaired chromatid breaks in metaphases after γ-ray irradiation. We further found that defective Chk1 activation was involved in the induction of G2 checkpoint defect in LMP1-expressing nasopharyngeal epithelial cells. Impairment of G2 checkpoint could result in loss of the acentrically broken chromatids and propagation of broken centric chromatids in daughter cells exiting mitosis, which facilitates chromosome instability. Our findings suggest that LMP1 expression facilitates genomic instability in cells under genotoxic stress. Elucidation of the mechanisms involved in LMP1-induced genomic instability in nasopharyngeal epithelial cells will shed lights on the understanding of role of EBV infection in NPC development. © 2012 Deng et al.published_or_final_versio

    Yim, Pang, and Thornton Reply:

    Get PDF

    Oxygen Vacancy Origin of the Surface Band-Gap State of TiO2(110)

    Get PDF
    Scanning tunneling microscopy and photoemission spectroscopy have been used to determine the origin of the band-gap state in rutile TiO2(110). This state has long been attributed to oxygen vacancies (O-b vac). However, recently an alternative origin has been suggested, namely, subsurface interstitial Ti species. Here, we use electron bombardment to vary the O-b vac density while monitoring the band-gap state with photoemission spectroscopy. Our results show that O-b vac make the dominant contribution to the photoemission peak and that its magnitude is directly proportional to the O-b vac density
    • …
    corecore