1,215 research outputs found

    Novel technique for monitoring the performance of the LAT instrument on board the GLAST satellite

    Get PDF
    The Gamma-ray Large Area Space Telescope (GLAST) is an observatory designed to perform gamma-ray astronomy in the energy range 20 MeV to 300 GeV, with supporting measurements for gamma-ray bursts from 10 keV to 25 MeV. GLAST will be launched at the end of 2007, opening a new and important window on a wide variety of high energy astrophysical phenomena . The main instrument of GLAST is the Large Area Telescope (LAT), which provides break-through high-energy measurements using techniques typically used in particle detectors for collider experiments. The LAT consists of 16 identical towers in a four-by-four grid, each one containing a pair conversion tracker and a hodoscopic crystal calorimeter, all covered by a segmented plastic scintillator anti-coincidence shield. The scientific return of the instrument depends very much on how accurately we know its performance, and how well we can monitor it and correct potential problems promptly. We report on a novel technique that we are developing to help in the characterization and monitoring of LAT by using the power of classification trees to pinpoint in a short time potential problems in the recorded data. The same technique could also be used to evaluate the effect on the overall LAT performance produced by potential instrumental problems.Comment: 2 pages, 1 figure, manuscript submitted on behalf of the GLAST/LAT collaboration to First GLAST symposium proceeding

    A systematic review of interventions to provide genetics education for primary care

    Get PDF
    Main themes and categories derived from the analysis. Table showing the main themes and all categories of data included in those themes. (PDF 26 kb

    Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of cosmological sources

    Get PDF
    Axion Like Particles (ALPs) are predicted to couple with photons in the presence of magnetic fields. This effect may lead to a significant change in the observed spectra of gamma-ray sources such as AGNs. Here we carry out a detailed study that for the first time simultaneously considers in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. An efficient photon/axion mixing in the source always means an attenuation in the photon flux, whereas the mixing in the intergalactic medium may result in a decrement and/or enhancement of the photon flux, depending on the distance of the source and the energy considered. Interestingly, we find that decreasing the value of the intergalactic magnetic field strength, which decreases the probability for photon/axion mixing, could result in an increase of the expected photon flux at Earth if the source is far enough. We also find a 30% attenuation in the intensity spectrum of distant sources, which occurs at an energy that only depends on the properties of the ALPs and the intensity of the intergalactic magnetic field, and thus independent of the AGN source being observed. Moreover, we show that this mechanism can easily explain recent puzzles in the spectra of distant gamma-ray sources... [ABRIDGED] The consequences that come from this work are testable with the current generation of gamma-ray instruments, namely Fermi (formerly known as GLAST) and imaging atmospheric Cherenkov telescopes like CANGAROO, HESS, MAGIC and VERITAS.Comment: 16 pages, 7 figures. Replaced to match the published version in Phys. Rev. D. Minor changes with respect to v

    Parsec scale polarization properties of the TeV blazar Markarian 421

    Get PDF
    In this work we present a polarization analysis at radio frequencies of Markarian 421, one of the closest (z=0.03) TeV blazars. The observations were obtained, both in total and in polarized intensity, with the Very Long Baseline Array (VLBA) at 15, 24, and 43 GHz throughout 2011, with one observation per month (for a total of twelve epochs). We investigate the magnetic field topology and the polarization structure on parsec scale and their evolution with time. We detect polarized emission both in the core and in the jet region, and it varies with frequency, location and time. In the core region we measure a mean fractional polarization of about 1-2%, with a peak of about 4% in March at 43 GHz; the polarization angle is almost stable at 43 GHz, but it shows significant variability in the range 114-173 deg at 15 GHz. In the jet region the polarization properties show a more stable behavior; the fractional polarization is about 16% and the polarization angle is nearly perpendicular to the jet axis. The higher EVPA variability observed at 15 GHz is due both to a variable Faraday rotation effect and to opacity. The residual variability observed in the intrinsic polarization angle, together with the low degree of polarization in the core region, could be explained with the presence of a blend of variable cross-polarized subcomponents within the beam.Comment: 6 pages, 4 figures, proceedings of the 12th European VLBI Network Symposium and Users Meeting (7-10 October 2014, Cagliari, Italy

    The TeV blazar Markarian 421 at the highest spatial resolution

    Get PDF
    We report the results obtained for the AGN Markarian 421 by model-fitting the data in the visibility plane, studing the proper motion of jet components, the light curve, and the spectral index of the jet features. We compare the radio data with optical light curves obtained at the Steward Observatory, considering also the optical polarization information. Mrk 421 has a bright nucleus and a one-sided jet extending towards the north-west for a few parsecs. The model-fits show that brightness distribution is well described using 6-7 circular Gaussian components, four of which are reliably identified at all epochs; all components are effectively stationary except for component D, at ~0.4 mas from the core, whose motion is however subluminal. Analysis of the light curve shows two different states, with the source being brighter and more variable in the first half of 2011 than in the second half. The highest flux density is reached in February. A comparison with the optical data reveals an increase of the V magnitude and of the fractional polarization simultaneous with the enhancement of the radio activity.Comment: 11 pages, 6 figure

    VLBA monitoring of Mrk 421 at 15 GHz and 24 GHz during 2011

    Get PDF
    High-resolution radio observations are ideal for constraining the value of physical parameters in the inner regions of active-galactic-nucleus jets and complement results on multiwavelength (MWL) observations. This study is part of a wider multifrequency campaign targeting the nearby TeV blazar Markarian 421 (z=0.031), with observations in the sub-mm (SMA), optical/IR (GASP), UV/X-ray (Swift, RXTE, MAXI), and gamma rays (Fermi-LAT, MAGIC, VERITAS). We investigate the jet's morphology and any proper motions, and the time evolution of physical parameters such as flux densities and spectral index. The aim of our wider multifrequency campaign is to try to shed light on questions such as the nature of the radiating particles, the connection between the radio and gamma-ray emission, the location of the emitting regions and the origin of the flux variability. We consider data obtained with the Very Long Baseline Array (VLBA) over twelve epochs (one observation per month from January to December 2011) at 15 GHz and 24 GHz. We investigate the inner jet structure on parsec scales through the study of model-fit components for each epoch. The structure of Mrk 421 is dominated by a compact (~0.13 mas) and bright component, with a one-sided jet detected out to ~10 mas. We identify 5-6 components in the jet that are consistent with being stationary during the 12-month period studied here. Measurements of the spectral index agree with those of other works: they are fairly flat in the core region and steepen along the jet length. Significant flux-density variations are detected for the core component. From our results, we draw an overall scenario in which we estimate a viewing angle 2{\deg} < theta < 5{\deg} and a different jet velocity for the radio and the high-energy emission regions, such that the respective Doppler factors are {\delta}r ~3 and {\delta}h.e. ~14.Comment: 9 pages, 4 figure

    Hydrogenation of an iridium-coordinated imidazol-2-ylidene ligand fragment

    Get PDF
    An iridium complex featuring a metalated lutidine-derived CNP ligand reacts with KOt Bu to yield a dimeric species with the two metal centers bound to the opposite ligands through the CHN arms. Furthermore, reaction with H2 in the presence of KOt Bu of the same iridium derivative results in the hydrogenation of the –CHQCH– imidazolylidene moiety of the complex. NMR spectroscopy monitoring of the latter reaction supports the initial formation of a dihydride iridium complex containing an imidazolylidene ligand fragment that is hydrogenated after prolonged reaction time.Ministerio de Economía y Competitividad de España (MINECO) y fondos FEDER de la Unión Europea-CTQ2015-69568-P, CTQ2016-80814-R y CTQ2016- 81797-RED

    Very Long Baseline polarimetry and the γ-ray connection in Markarian 421 during the broadband campaign in 2011

    Get PDF
    Context. This is the third paper in a series devoted to the analysis of the multiwavelength data from a campaign on the nearby (z = 0.03) TeV blazar Mrk 421 during 2011. Aims: We investigate the structure of the high angular resolution polarization, the magnetic topology, the total intensity light curve, the γ-ray flux, and the photon index. We describe how they evolve and how they are connected. Methods: We analyzed data in polarized intensity obtained with the Very Long Baseline Array (VLBA) at twelve epochs (one observation per month from January to December 2011) at 15, 24, and 43 GHz. For the absolute orientation of the electric vector position angles (EVPA) we used the D-terms method; we also confirm its accuracy. We also used γ-ray data from the Fermi Large Area Telescope on weekly time bins throughout 2011. Results: The source shows polarized emission, and its properties vary with time, frequency, and location along the jet. The core mean polarization fraction is generally between 1% and 2%, with a 4% peak at 43 GHz in March; the polarization angle is variable, mainly at 15 GHz, where it changes frequently, and less so at 43 GHz, where it oscillates in the range 114°-173°. The jet polarization properties are more stable, with a fractional polarization of around 16% and a polarization angle nearly perpendicular to the jet axis. The average flux and photon index at γ-ray energies are (17.4 ± 0.5) × 10-8 ph cm-2 s-1 and Γ = 1.77 ± 0.02. The γ-ray light curve shows variability, with a main peak of (38 ± 11) × 10-8 ph cm-2 s-1 at the beginning of March and two later peaks centered on September 8 and November 13. The first γ-ray peak appears to be associated with the peak in the core polarized emission at 43 GHz, as well as with the total intensity light curve. A discrete correlation function analysis yields a correlation coefficient of 0.54 at zero delay, with a significance level \u3e99.7%. Conclusions: With this multifrequency study, we accurately determine the polarization properties of Mrk 421, both in the core and in the jet region. The radio and γ-ray light curves are correlated. The observed EVPA variability at 15 GHz is partly due to opacity and partly to a variable Faraday rotation effect. To explain the residual variability of the intrinsic polarization angle and the low degree of polarization in the core region, we invoke a blend of variable cross-polarized subcomponents with different polarization properties within the beam

    Multi-frequency study of the TeV blazar Markarian 421 with VLBA observations taken during 2011

    Get PDF
    We present data obtained with the Very Long Baseline Array (VLBA) at twelve epochs (one observation per month from January to December 2011) at 15 and 24 GHz for the nearby TeV blazar Markarian 421 (z=0.031). We investigate the inner jet structure on parsec scales through the study of model-fit components for each epoch. The structure of Mrk 421 is dominated by a compact (FWHM about 0.13 mas) and bright component, with a one sided jet detected out to about 10 mas. We identified 5-6 components in the jet which are consistent with being stationary during the 12-month period studied here. Significant flux density variations have been detected for the core component. From our results, we estimate a viewing angle 2◦ \u3c θ \u3c 5◦ and a different jet velocity for the radio and the high-energy emission regions, such that the respective Doppler factors are δr ∼ 3 and δh.e. ∼ 14
    corecore