3 research outputs found

    Growth and Characterization of Organic 2-Chloro 5-Nitroaniline Crystal Using the Vertical Bridgman Technique

    No full text
    In this article, we discuss the preparation of organic 2-chloro-5 nitroaniline (2C5NA) crystals and their different kinds of physical, chemical, and mechanical properties. The vertical Bridgman approach was used to effectively produce the bulk organic 2C5NA crystal. To produce a good-quality bulk crystal, the shape, dimensions, and cone angle of the ampoule were optimized. Also, the temperature profile was set for the 2C5NA crystal. The growth atmosphere and the lowering rate were identified to obtain a homogeneous mixture of the compounds and initiate the nucleation process. Single-crystal X-ray diffraction (XRD), powder XRD, proton Fourier transform nuclear magnetic resonance (FT-NMR), and Fourier transform infrared investigations were used to confirm the crystal structure, molecular structure, and presence of functional groups in the formed crystal. The formed crystal has a monoclinic crystal structure with the space group P21/c, according to single-crystal XRD analysis. The thermal stability and kinetic parameters were examined using thermogravimetric analysis and differential thermal curves. From dielectric analysis, the electrical conductivity and dielectric behavior of 2C5NA were investigated with variations in frequency and temperature. The organic 2-chloro-5-nitroaniline crystal demonstrates that the indentation size effect is observed in the Vickers micro-hardness test, which was also carried out

    Magnetic Nanomaterials as Catalysts for Syngas Production and Conversion

    No full text
    The conversion of diverse non-petroleum carbon elements, such as coal, biomass, natural/shale gas, and even CO2, into cleaner hydrocarbon fuels and useful chemicals relies heavily on syngas, which is a combination of CO and H2. Syngas conversions, which have been around for almost a century, will probably become even more important in the production of energy and chemicals due to the rising need for liquid fuels and chemical components derived from sources of carbon other than crude oil. Although a number of syngas-based technologies, including the production of methanol, Fischer–Tropsch (FT) synthesis, and carbonylation, have been industrialized, there is still a great need for new catalysts with enhanced activity and adjustable product selectivity. New novel materials or different combinations of materials have been investigated to utilize the synergistic effect of these materials in an effective way. Magnetic materials are among the materials with magnetic properties, which provide them with extra physical characteristics compared to other carbon-based or conventional materials. Moreover, the separation of magnetic materials after the completion of a specific application could be easily performed with a magnetic separation process. In this review, we discuss the synthesis processes of various magnetic nanomaterials and their composites, which could be utilized as catalysts for syngas production and conversion. It is reported that applying an external magnetic field could influence the outcomes of any applications of magnetic nanomaterials. Here, the possible influence of the magnetic characteristics of magnetic nanomaterials with an external magnetic field is also discussed
    corecore