2 research outputs found

    A regression method for real-time video quality evaluation

    Get PDF
    No-Reference (NR) metrics provide a mechanism to assess video quality in an ever-growing wireless network. Their low computational complexity and functional characteristics make them the primary choice when it comes to realtime content management and mobile streaming control. Unfortunately, common NR metrics suer from poor accuracy, particularly in network-impaired video streams. In this work, we introduce a regression-based video quality metric that is simple enough for real-time computation on thin clients, and comparably as accurate as state-of-the-art Full-Reference (FR) metrics, which are functionally and computationally inviable in real-time streaming. We benchmark our metric against the FR metric VQM (Video Quality Metric), finding a very strong correlation factor

    Quality assessment of single-channel EEG for wearable devices

    No full text
    The recent embedding of electroencephalographic (EEG) electrodes in wearable devices raises the problem of the quality of the data recorded in such uncontrolled environments. These recordings are often obtained with dry single-channel EEG devices, and may be contaminated by many sources of noise which can compromise the detection and characterization of the brain state studied. In this paper, we propose a classification-based approach to effectively quantify artefact contamination in EEG segments, and discriminate muscular artefacts. The performance of our method were assessed on different databases containing either artificially contaminated or real artefacts recorded with different type of sensors, includingwet and dry EEG electrodes. Furthermore, the quality of unlabelled databases was evaluated. For all the studied databases, the proposed method is able to rapidly assess the quality of the EEG signals with an accuracy higher than 90%. The obtained performance suggests that our approach provide an efficient, fast and automated quality assessment of EEG signals from low-cost wearable devices typically composed of a dry single EEG channel
    corecore