11 research outputs found

    Mechanical Properties of Porous Ceramics

    Get PDF
    It is widely known that increasing interest in porous ceramics is due to their special properties, which comprise high volumetric porosity (up to 90%) with open or closed pores, and a broad range of pore sizes (micropores: d  d > 2 nm and macropores: d > 50 nm). These properties have many uses comprehending macroscaled devices, mesoscaled materials and microscaled pieces. During their usage, these materials are usually submitted to thermal and/or mechanical loading stresses. Therefore, it is a premise to understand how these porous structures behave under thermomechanical stresses to design materials that show adequate properties for the required application. In this context, the aim of this chapter is to review the mechanical properties of macroporous ceramics

    Porous alumina-spinel ceramics for high temperature applications

    No full text
    In order to reduce energy costs, high-temperature insulation porous refractory ceramics have been subjected to increasing demands. Among the techniques used to produce these materials (such as the addition of foaming agents and organic compounds), the pore generation via phase transformation presents key aspects, such as easy processing and the absence of toxic volatiles. In this study, this technique was applied to produce porous ceramics by decomposing an aluminum magnesium hydro-carbonate known as hydrotalcite (Mg(6)Al(2)(CO(3))(OH)(16)center dot 4H(2)O). It was found out that by using this complex compound, a large fraction of pores can be generated and kept at high temperatures (above 1300 degrees C) due to the in situ formation of spinel-like phases (MgAl(2)O(4)). (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.FAPESPCNPqAlcoa Aluminum (Brazil

    Adhesion as a tool for in-built nanotechnology design in cementitious materials

    No full text
    Confined water, such as those molecules in nanolayers of 2-3 nm in length, plays an important role in the adhesion of hydrophilic materials, mainly in cementitious ones. In this study, the effects of water containing kosmotropic substances on adhesion, known for their ability of enhancing the hydrogen bond (H-bond) network of confined water, were evaluated using mechanical strength tests. Indeed, to link adhesion provided by water confined in nanolayers to a macro-response of the cementitious samples, such as the bending strength, requires the evaluation of local water H-bond network configuration in the presence of kosmotropes, considering their influences on the extent and the strength of H-bonds. Among the kosmotropes, trimethylamine and sucrose provided a 50% increase in bending strength compared to the reference samples, the latter just using water as an adhesive, whereas trehalose was responsible for reducing the bending strength to a value close to the samples without any adhesive. The results attained opened up perspectives regarding exploring the confined water behavior which naturally occurs throughout the hydration process in cement-based materials.Fundacao de Amparo Pesquisa do Estado de Sao Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)[02/10492-3]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)[151329/2007-9

    Carbon ablators with porosity tailored for aerospace thermal protection during atmospheric re-entry

    No full text
    Porous carbon ablators offer cost-effective thermal protection for aerospace vehicles during re-entry into planetary atmospheres. However, the exploration of more distant planets requires the development of ablators that are able to withstand stronger thermal radiation conditions. Here, we report the development of bio-inspired porous carbon insulators with pore sizes that are deliberately tuned to enhance heat-shielding performance by increasing scattering of high-temperature thermal radiation. Pore size intervals that promote scattering are first estimated using an established model for the radiative contribution to the thermal conductivity of porous insulators. On the basis of this theoretical analysis, we identify a polymer additive that enables the formation of pores in the desired size range through the polymerization-induced phase separation of a mixture of phenolic resin and ethylene glycol. Optical and electron microscopy, porosimetry and mechanical tests are used to characterize the structure and properties of porous insulators prepared with different resin formulations. Insulators with pore sizes in the optimal scattering range reduce laser-induced damage of the porous structures by up to 42%, thus offering a promising and simple route for the fabrication of carbon ablators for enhanced thermal protection at high temperatures.ISSN:0008-622
    corecore