26 research outputs found

    Molecular targets of omega-3 fatty acids for cancer therapy

    No full text
    Nowadays, dietary guidelines acknowledge the therapeutic role of omega-3 polyunsaturated fatty acids, as the most important class of fatty acids, against different human diseases. During the last two decades, the average level of consumption of omega-3 polyunsaturated fatty acids has increased from 0.1 to 0.2 g per day. Omega-3 polyunsaturated fatty acids are a group of long-chain polyunsaturated fatty acids which are identified in different foods such as fatty fish, shellfish, and vegetable oils. A growing body of epidemiological and experimental evidence supports the anticancer effects of omega-3 polyunsaturated fatty acids, which led to the identification of their molecular targets in several cancer models. The present review focuses on the basic evidence supporting the potential applications of omega-3 polyunsaturated fatty acids in cancer therapy

    Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway

    No full text
    Cardiovascular diseases comprise of non-communicable disorders that involve the heart and/or blood vessels and have become the leading cause of death worldwide with increased prevalence by age. mTOR is a serine/threonine-specific protein kinase which plays a central role in many physiological processes including cardiovascular diseases, and also integrates various proliferative signals, nutrient and energy abundance and stressful situations. mTOR also acts as central regulator during chronic stress, mitochondrial dysfunction and deregulated autophagy which are associated with senescence. Under oxidative stress, mTOR has been reported to exert protective effects regulating apoptosis and autophagy processes and favoring tissue repair. On the other hand, inhibition of mTOR has been suggested to have beneficial effects against atherosclerosis, cardiac hypertrophy and heart failure, and also in extending the lifespan. In this aspect, the use of drugs or natural compounds, which can target mTOR is an interesting approach in order to reduce the number of deaths caused by cardiovascular disease. In the present review, we intend to shed light on the possible effects and molecular mechanism of natural agents like polyphenols via regulating mTOR

    Novel therapeutic strategies for stroke: The role of autophagy

    No full text
    Autophagy is an important biological mechanism involved in the regulation of numerous fundamental cellular processes that are mainly associated with cellular growth and differentiation. Autophagic pathways are vital for maintaining cellular homeostasis by enhancing the turnover of nonfunctional proteins and organelles. Neuronal cells, like other eukaryotic cells, are dependent on autophagy for neuroprotection in response to stress, but can also induce cell death in cerebral ischemia. Recent studies have demonstrated that autophagy may induce neuroprotection following acute brain injury, including ischemic stroke. However in some special circumstances, activation of autophagy can induce cell death, playing a deleterious role in the etiology and progression of ischemic stroke. Currently, there are no therapeutic options against stroke that demonstrate efficient neuroprotective abilities. In the present work, we will review the significance of autophagy in the context of ischemic stroke by first outlining its role in ischemic neuronal death. We will also highlight the potential therapeutic applications of pharmacological modulators of autophagy, including some naturally occurring polyphenolic compounds that can target this catabolic process. Our findings provide renewed insight on the mechanism of action of autophagy in stroke together with potential neuroprotective compounds, which may partially exert their function through enhancing mitochondrial function and attenuating damaging autophagic processes
    corecore