2 research outputs found
Bessel-Maitland Function of Several Variables and its Properties Related to Integral Transforms and Fractional Calculus
In the recent years, various generalizations of Bessel function were introduced and its various properties were investigated by many authors. Bessel-Maitland function is one of the generalizations of Bessel function. The objective of this paper is to establish a new generalization of Bessel-Maitland function using the extension of beta function involving Appell series and Lauricella functions. Some of its properties including recurrence relation, integral representation and differentiation formula are investigated. Moreover, some properties of Riemann-Liouville fractional operator associated with the new generalization of Bessel-Maitland function are also discussed
ON EXTENSION OF MITTAG-LEFFLER FUNCTION
In this paper, we study the extended Mittag -Leffler function by using generalized beta function and obtain various differential properties, integral representations. Further, we discuss Mellin transform of these functions in terms of generalized Wright hyper geometric function and evaluate Laplace transform, and Whittaker transform in terms of extended beta function. Finally, several interesting special cases of extended Mittag -Leffler functions have also be given