23 research outputs found

    Improved convergence of fast integral equation solvers for acoustic scattering by inhomogeneous penetrable media with discontinuous material interface

    Get PDF
    In recent years, several fast solvers for the solution of the Lippmann-Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by penetrable inhomogeneous obstacles, have been proposed. While many of these fast methodologies exhibit rapid convergence for smoothly varying scattering configurations, the rate for most of them reduce to either linear or quadratic when material properties are allowed to jump across the interface. A notable exception to this is a recently introduced Nystr\"{o}m scheme [J. Comput. Phys., 311 (2016), 258--274] that utilizes a specialized quadrature in the boundary region for a high-order treatment of the material interface. In this text, we present a solution framework that relies on the specialized boundary integrator to enhance the convergence rate of other fast, low order methodologies without adding to their computational complexity of O(NlogN)O(N \log N) for an NN-point discretization. In particular, to demonstrate the efficacy of the proposed framework, we explain its implementation to enhance the order to convergence of two schemes, one introduced by Duan and Rokhlin [J. Comput. Phys., 228(6) (2009), 2152--2174] that is based on a pre-corrected trapezoidal rule while the other by Bruno and Hyde [J. Comput. Phys., 200(2) (2004), 670--694] which relies on a suitable decomposition of the Green's function via Addition theorem. In addition to a detailed description of these methodologies, we also present a comparative performance study of the improved versions of these two and the Nystr\"{o}m solver in [J. Comput. Phys., 311 (2016), 258--274] through a wide range of numerical experiments

    An efficient high-order Nystr\"om scheme for acoustic scattering by inhomogeneous penetrable media with discontinuous material interface

    Get PDF
    This text proposes a fast, rapidly convergent Nystr\"{o}m method for the solution of the Lippmann-Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by inhomogeneous obstacles, while allowing the material properties to jump across the interface. The method works with overlapping coordinate charts as a description of the given scatterer. In particular, it employs "partitions of unity" to simplify the implementation of high-order quadratures along with suitable changes of parametric variables to analytically resolve the singularities present in the integral operator to achieve desired accuracies in approximations. To deal with the discontinuous material interface in a high-order manner, a specialized quadrature is used in the boundary region. The approach further utilizes an FFT based strategy that uses equivalent source approximations to accelerate the evaluation of large number of interactions that arise in the approximation of the volumetric integral operator and thus achieves a reduced computational complexity of O(NlogN)O(N \log N) for an NN-point discretization. A detailed discussion on the solution methodology along with a variety of numerical experiments to exemplify its performance in terms of both speed and accuracy are presented in this paper

    Fast, higher-order direct/iterative hybrid solver for scattering by Inhomogeneous media -- with application to high-frequency and discontinuous refractivity problems

    Full text link
    This paper presents a fast high-order method for the solution of two-dimensional problems of scattering by penetrable inhomogeneous media, with application to high-frequency configurations containing (possibly) discontinuous refractivities. The method relies on a combination of a differential volumetric formulation and a boundary integral formulation. Thus, in the proposed approach the entire computational domain is partitioned into large numbers of volumetric spectral approximation patches which are then grouped into patch subsets for local direct solution; the interactions with the exterior domain are handled by means of a boundary integral equation. The resulting algorithm can be quite effective: after a modestly-demanding precomputation stage (whose results for a given frequency can be repeatedly used for arbitrarily chosen incidence angles), the proposed algorithm can accurately evaluate scattering by configurations including large and complex objects and/or high refractivity contrasts, including possibly refractive-index discontinuities, in fast single-core runs

    Sequencing Closterium moniliferum: Future prospects in nuclear waste disposal

    Get PDF
    AbstractGenome sequencing can play a vital role in health and several other domains such as in nuclear outflow related environmental issues. The power of information derived out of sequencing has been used in the field of health care, evolutionary studies and for better understanding of the biological framework of life. Through the recent advancements in sequencing studies, now the researchers are aiming to use its power in non conventional areas. Here we have discussed on the importance of sequencing the Closterium moniliferum genome which will prove to be a future endeavour in nuclear cleanup and radioactive waste disposal

    Improved convergence of fast integral equation solvers for acoustic scattering by inhomogeneous penetrable media with discontinuous material interface

    Get PDF
    In recent years, several fast solvers for the solution of the Lippmann–Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by penetrable inhomogeneous obstacles, have been proposed. While many of these fast methodologies exhibit rapid convergence for smoothly varying scattering configurations, the rate for most of them reduce to either linear or quadratic when material properties are allowed to jump across the interface. A notable exception to this is a recently introduced Nyström scheme (Anand et al., 2016 [22]) that utilizes a specialized quadrature in the boundary region for a high-order treatment of the material interface. In this text, we present a solution framework that relies on the specialized boundary integrator to enhance the convergence rate of other fast, low order methodologies without adding to their computational complexity of O(N log N) for an N-point discretization. In particular, to demonstrate the efficacy of the proposed framework, we explain its implementation to enhance the order to convergence of two schemes, one introduced by Duan and Rokhlin (2009) [13] that is based on a pre-corrected trapezoidal rule while the other by Bruno and Hyde (2004) [12] which relies on a suitable decomposition of the Green's function via Addition theorem. In addition to a detailed description of these methodologies, we also present a comparative performance study of the improved versions of these two and the Nyström solver in Anand et al. (2016) [22] through a wide range of numerical experiments

    An efficient high-order Nyström scheme for acoustic scattering by inhomogeneous penetrable media with discontinuous material interface

    Get PDF
    This text proposes a fast, rapidly convergent Nyström method for the solution of the Lippmann–Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by inhomogeneous obstacles, while allowing the material properties to jump across the interface. The method works with overlapping coordinate charts as a description of the given scatterer. In particular, it employs “partitions of unity” to simplify the implementation of high-order quadratures along with suitable changes of parametric variables to analytically resolve the singularities present in the integral operator to achieve desired accuracies in approximations. To deal with the discontinuous material interface in a high-order manner, a specialized quadrature is used in the boundary region. The approach further utilizes an FFT based strategy that uses equivalent source approximations to accelerate the evaluation of large number of interactions that arise in the approximation of the volumetric integral operator and thus achieves a reduced computational complexity of O(N log N) for an N-point discretization. A detailed discussion on the solution methodology along with a variety of numerical experiments to exemplify its performance are presented in this paper

    Spatial, temporal, and demographic patterns in prevalence of chewing tobacco use in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Findings In 2019, 273 center dot 9 million (95% uncertainty interval 258 center dot 5 to 290 center dot 9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4 center dot 72% (4 center dot 46 to 5 center dot 01). 228 center dot 2 million (213 center dot 6 to 244 center dot 7; 83 center dot 29% [82 center dot 15 to 84 center dot 42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15-19 years was over 10% in seven locations in 2019. Although global agestandardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: -1 center dot 21% [-1 center dot 26 to -1 center dot 16]), similar progress was not observed for chewing tobacco (0 center dot 46% [0 center dot 13 to 0 center dot 79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (-0 center dot 94% [-1 center dot 72 to -0 center dot 14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Summary Background Chewing tobacco and other types of smokeless tobacco use have had less attention from the global health community than smoked tobacco use. However, the practice is popular in many parts of the world and has been linked to several adverse health outcomes. Understanding trends in prevalence with age, over time, and by location and sex is important for policy setting and in relation to monitoring and assessing commitment to the WHO Framework Convention on Tobacco Control. Methods We estimated prevalence of chewing tobacco use as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 using a modelling strategy that used information on multiple types of smokeless tobacco products. We generated a time series of prevalence of chewing tobacco use among individuals aged 15 years and older from 1990 to 2019 in 204 countries and territories, including age-sex specific estimates. We also compared these trends to those of smoked tobacco over the same time period. Findings In 2019, 273 & middot;9 million (95% uncertainty interval 258 & middot;5 to 290 & middot;9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4 & middot;72% (4 & middot;46 to 5 & middot;01). 228 & middot;2 million (213 & middot;6 to 244 & middot;7; 83 & middot;29% [82 & middot;15 to 84 & middot;42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15-19 years was over 10% in seven locations in 2019. Although global age standardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: -1 & middot;21% [-1 & middot;26 to -1 & middot;16]), similar progress was not observed for chewing tobacco (0 & middot;46% [0 & middot;13 to 0 & middot;79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (-0 & middot;94% [-1 & middot;72 to -0 & middot;14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Copyright (c) 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe
    corecore