36 research outputs found
Enhanced heterogeneously catalyzed Suzuki–Miyaura reaction over SiliaCat Pd(0)
The SiliaCat Pd(0) solid catalyst can be efficiently employed in the Suzuki–Miyaura cross-coupling of an ample variety of haloarenes, including economically viable chloroarenes. The catalyst can be extensively recycled without loss of activity and with low leaching of valued palladium, opening the route to widespread utilization of the method to afford high yields of biaryls devoid of contaminating by-products
Characterization of Nanostructured SilicaCat Pd0
Structural investigation on nanostructured
SiliaCat Pd0 palladium catalyst sheds light into the origins of the remarkable activity of these new catalytic materials
Heterogeneous versus Homogeneous Palladium Catalysts for Cross-Coupling Reactions
A large number of immobilized-Pd-catalysts for cross-coupling reactions have been introduced in the last decade. Are the observed catalyzed reactions truly heterogeneous or are they homogeneous due to leached palladium? This account critically addresses the leaching issue by selectively referring to some of the newly developed catalytic systems in an attempt to evaluate said systems based on uniform criteria. The report is concluded by identifying the relevant chemical and structural challenges in the field
Heterogeneous Sonogashira Coupling over Nanostructured SiliaCat Pd(0)
Sol–gel entrapped catalyst SiliaCat Pd(0) heterogeneously mediates the Sonogoashira coupling of different aryl halides and phenylacetylene either under thermal conditions or, much more efficiently, under microwave irradiation, affording good conversions of coupled products. Leaching of valued Pd is limited, and the catalyst can be reused
A new class of heterogeneous Pd catalysts for synthetic organic chemistry
A new series of leach-proof nanostructured Pd(0) catalysts able to catalyze a number of fundamental organic transformations including C–C bond formation has been developed. Reactions in general proceed with high yield and often at completion, while the catalysts can be reused in further reaction runs. This establishes a new class of relevant solid catalysts for synthetic organic chemistry trademarked SiliaCat Pd0 Hydrogel
Green and Direct Synthesis of Benzaldehyde and Benzyl Benzoate in One Pot
High yields of valued benzaldehyde and benzyl benzoate are obtained in one pot starting from benzyl alcohol using oxygen as only oxidant under mild conditions (2 bar O2, 100 °C) along with an ultralow amount (0.02 mol %) of Au nanoparticles heterogenized over a spherical ORMOSIL mesoporous support. The process is remarkably selective and the catalyst is stable