19 research outputs found
On traveling waves in lattices: The case of Riccati lattices
The method of simplest equation is applied for analysis of a class of
lattices described by differential-difference equations that admit
traveling-wave solutions constructed on the basis of the solution of the
Riccati equation. We denote such lattices as Riccati lattices. We search for
Riccati lattices within two classes of lattices: generalized Lotka - Volterra
lattices and generalized Holling lattices. We show that from the class of
generalized Lotka - Volterra lattices only the Wadati lattice belongs to the
class of Riccati lattices. Opposite to this many lattices from the Holling
class are Riccati lattices. We construct exact traveling wave solutions on the
basis of the solution of Riccati equation for three members of the class of
generalized Holing lattices.Comment: 17 pages, no figure
Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28
Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry