12 research outputs found

    Directly Printed Aligner: Aligning with the Future

    Get PDF
    Orthodontics stands on a junction where traditional analog appliance manufacturing slowly but steadily changes to a digital one with the use of 3D technology. The main cause of this shift was the invention and use of computers. The use of computers, computer-aided design (CAD) software, computerized machines, and newly invented materials allowed this change to occur in a relatively short time in dentistry and orthodontics. The trigger for this transformation is the ability to digitally scan the oral cavity. CAD software and 3D printers already existed. It took a few years to include this technology in orthodontics and continuously apply it in the orthodontic office. Orthodontic treatment is mainly based on the use of fixed appliances, while in the last years, thermoformed aligners have been introduced as an alternative whenever a more invisible treatment modality is preferred. Clear aligner treatment is performed using thermoformed aligner. A new aligner resin has been recently invented to allow direct aligner printing. Directly printed aligner possess many advantages compared to thermoformed one. Research has been initiated to investigate all the aspects of the workflow and aligner printing outcome. More studies must be performed to look into the various aspects of directly printed aligners

    New aesthetic in-house 3D-printed brackets: proof of concept and fundamental mechanical properties

    Full text link
    Objectives: Three-dimensional (3D) printing technology is an emerging manufacturing process for many orthodontic appliances, and the aim of this study was to evaluate the mechanical properties of resin-based materials as alternatives for the in-house preparation of orthodontic brackets. Material and methods: Two types of 3D printed resins used for temporary (T) and permanent (P) crown fabrication were included in this study. Ten blocks from each resin were manufactured by a 3D printer and, after embedding them in acrylic resin, the samples were subjected to metallographic grinding and polishing, followed by instrumented indentation testing (IIT). Martens hardness (HM), indentation modulus (EIT), and elastic index (ηIT) were determined with a Vickers indenter recording force-indentation depth curves from each specimen. After calculating descriptive statistics, differences between material types were investigated with Wilcoxon rank sum test accounting for clustering of measurements within specimens at alpha = 5%. Results: No statistically significant differences in the mechanical properties of the two tested materials were seen: HM: median 279 N/mm2 (interquartile range [IQR] 275-287 N/mm2) for T and median 279 N/mm2 (IQR 270-285 N/mm2) for P (P value = 0.63); EIT: median 5548 MPa (IQR 5425-5834 MPa) for T and median 5644 (IQR 5420-5850 MPa) for P (P value = 0.84); ηIT: median 47.1% (46.0-47.7%) for T and median 46.0% (IQR 45.4-47.8%) for P (P value = 0.24). Conclusions: Under the limitations of this study, it may be concluded that the mechanical properties of the two 3D printed resins tested are equal, and thus, no differences in their clinical performance are expected. Keywords: 3D printing; Instrumented indentation testing; Mechanical properties; Orthodontic brackets; Resins

    Cytotoxicity and estrogenicity of a novel 3-dimensional printed orthodontic aligner

    Full text link
    INTRODUCTION Orthodontic aligners printed with in-office 3-dimensional (3D) procedures have been described, but no data on their biocompatibility exist. This study investigates the cytotoxicity and estrogenicity of a 3D-printed orthodontic aligner by assessing its biological and behavioral effects. METHODS Ten sets of 1 type of aligner were immersed in sterile deionized water for 14 days, and the cytotoxicity and estrogenicity of released factors were assessed via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays on human gingival fibroblasts and the estrogen-sensitive MCF-7 and the estrogen-insensitive MDA-MB-231 breast cancer cell lines. 17β-Estradiol and bisphenol-A were used as positive controls. The statistical analysis of data was performed with generalized linear models at a 0.05 level of significance. RESULTS No signs of cytotoxicity were seen for the aligner samples for concentrations (v/v) of 20% (P = 0.32), 10% (P = 0.79), or 5% (P = 0.76). The antioxidant activity expressed as the capacity to reduce intracellular levels of reactive oxygen species was not affected in the aligner samples (P = 0.08). No significant estrogenicity was induced by the aligner samples compared with eluents from the negative control for both MCF-7 (P = 0.65) and MDA-MB-231 (P = 0.78). As expected, 17β-Estradiol and bisphenol-A stimulated MCF-7 cell proliferation, whereas no effect was observed on MDA-MB-231 cells. CONCLUSIONS In conclusion, if any factors were released during the 14-day aging of 3D-printed aligners in water, these were not found to be cytotoxic for human gingival fibroblasts and did not affect their intracellular reactive oxygen species levels. Moreover, no estrogenic effects of these putative eluates were observed based on an E-screen assay

    Mechanical and electrochemical characterization of 3D printed orthodontic metallic appliances after in vivo ageing

    Full text link
    Objectives: Three-dimensional (3D) printing technology is a promising technique for fabricating custom orthodontic metallic appliances. Aim of this study was to assess the effect of intraoral aging on the mechanical / electrochemical properties of 3D-printed orthodontic metallic appliances. Methods: Twelve molar orthodontic distalization appliances 3D-printed from cobalt chromium (Co-Cr) alloy were retrieved after intraoral use and twenty blocks fabricated under similar conditions were used as control. The samples' microstructural / elemental composition assessment was assessed with SEM/EDS, while their mechanical properties (modulus of elasticity [EIT], Martens hardness [HM] and the elastic index [ηIT]) were measured by instrumented indentation testing. Finally, the samples' electrochemical features were assessed with a potentiostat-connected cell arrangement in terms of open circuit potential (OCP), corrosion potential (Ez), current density (I300) and breaking potential (Epit). Results were analyzed by t-test / Mann-Whitney test (α = 0.05). Results: The used Co-Cr alloy was found to have a highly homogenous structure with no significant differences between retrieved and new specimens in HM (4037.7 ± 215.6 vs 4090.9 ± 259.8 N/mm2), EIT (120.0 ± 13.2 vs 123.8 ± 12.9 GPa), or nIT (28.4 ± 2.6 vs 28.6 ± 2.9 %) (P > 0.05 in all instances). Metallic surfaces retained the same oxidation tendency and oxide dissolution rate in passive region in both groups (P > 0.05 for OCP, Ez, and I300). However, intraorally-aged specimens had a significantly lower breakdown potential due to degraded protection efficacy of surface oxide (P = 0.003 for Epit). Significance: The tested 3D-printed Co-Cr orthodontic appliances present clinically-acceptable mechanical properties that remained unaffected by intraoral ageing, which however degraded the protection of surface oxide against pitting corrosion. Keywords: 3D printing; Co-Cr alloys; Corrosive resistance; Electrochemical behavior; Intraoral ageing; Orthodontic appliances

    From biomimetics to smart materials and 3D technology: Applications in orthodontic bonding, debonding, and appliance design or fabrication

    No full text
    This review covers aspects of orthodontic materials, appliance fabrication and bonding, crossing scientific fields and presenting recent advances in science and technology. Its purpose is to familiarize the reader with developments on these issues, indicate possible future applications of such pioneering approaches, and report the current status in orthodontics. The first section of this review covers shape-memory polymer wires, several misconceptions arising from the recent introduction of novel three-dimensional (3D)-printed aligners (mistakenly termed shape-memory polymers only because they present a certain degree of rebound capacity, as most non-stiff alloys or polymers do), frictionless surfaces enabling resistance-less sliding, self-healing materials for effective handling of fractured plastic/ceramic brackets, self-cleaning materials to minimize microbial attachment or plaque build-up on orthodontic appliances, elastomers with reduced force relaxation and extended stretching capacity to address the problem of inadequate force application during wire-engagement in the bracket slot, biomimetic (non-etching mediated) adhesive attachment to surfaces based on the model of the gecko and the mussel, and command-debond adhesives as options for an atraumatic debonding. This review’s second section deals with the recent and largely unsubstantiated application of 3D-printed alloys and polymers in orthodontics and aspects of planning, material fabrication, and appliance design

    Three-Dimensional-Printed Customized Orthodontic and Pedodontic Appliances: A Critical Review of a New Era for Treatment

    No full text
    Three-dimensional (3D) designing and manufacturing technology is a direct derivative of digital technology. Three-dimensional volume and surface acquisition, CAD software, and 3D manufacturing are major changes included in daily practice in many orthodontic and pedodontic offices. Customized appliances can be designed using dental CAD software or general-purpose CAD software in the office or a laboratory. Materials that can be used are resins, alloys, or zirconia. Methods: The search strategy of this critical review included keywords in combination with MeSH terms in Medline, Scopus, and Cochrane Library up to June 2022 in the English language without any limit to the publication period. Results: According to our search, 12 articles were selected for our study. All the articles were in vitro prospective studies. Conclusions: The results suggested that almost all the known appliances can be designed and printed in a tailor-made fashion in contrast to the traditional one-size-fits-all approach. Customized appliances should be manufactured according to the patient’s needs, and this is justified by the certainty that this approach will be beneficial for the patient’s treatment. There is a need for more research on all direct 3D-printed appliances

    Three-Dimensional Printing Technology in Orthodontics for Dental Models: A Systematic Review

    No full text
    Background: Three-dimensional printing technology is an additive manufacturing technology that is used to reconstruct 3D objects. In the last decade, it has been rapidly involved in dentistry and in orthodontics. This article aims to review the literature and present the accuracy of different 3D printer types and any factors that could affect the 3D printing of dental models in the orthodontic field. Methods: The search strategy of this systematic review included keywords in combination with MeSH terms in Medline, Scopus, and Cochrane Library until June 2022 and only in English. Results: Eleven articles were selected for our study. All the articles were in vitro prospective studies, and they presented a low risk of bias. The results suggested that the accuracy of a printed dental cast can be affected by the different types of 3D technologies, the dental cast’s base design, and the printing materials. The accuracy appears to not be affected by the layer height and the position of the model on the building template. Conclusions: According to this systematic review, all different types of 3D technology can produce clinically accepted results for orthodontic purposes. There is a need for more studies to clarify the accuracy and added value of 3D printing technology in orthodontics
    corecore