99 research outputs found

    The Flux-Across-Surfaces Theorem for a Point Interaction Hamiltonian

    Full text link
    The flux-across-surfaces theorem establishes a fundamental relation in quantum scattering theory between the asymptotic outgoing state and a quantity which is directly measured in experiments. We prove it for a hamiltonian with a point interaction, using the explicit expression for the propagator. The proof requires only assuptions on the initial state and it covers also the case of zero-energy resonance. We also outline a different approach based on generalized eigenfunctions, in view of a possible extension of the result.Comment: AMS-Latex file, 11 page

    A New Approach to Transport Coefficients in the Quantum Spin Hall Effect

    Get PDF
    We investigate some foundational issues in the quantum theory of spin transport, in the general case when the unperturbed Hamiltonian operator H does not commute with the spin operator in view of Rashba interactions, as in the typical models for the quantum spin Hall effect. A gapped periodic one-particle Hamiltonian H is perturbed by adding a constant electric field of intensity ε≪ 1 in the j-th direction, and the linear response in terms of a S-current in the i-th direction is computed, where S is a generalized spin operator. We derive a general formula for the spin conductivity that covers both the choice of the conventional and of the proper spin current operator. We investigate the independence of the spin conductivity from the choice of the fundamental cell (unit cell consistency), and we isolate a subclass of discrete periodic models where the conventional and the proper S-conductivity agree, thus showing that the controversy about the choice of the spin current operator is immaterial as far as models in this class are concerned. As a consequence of the general theory, we obtain that whenever the spin is (almost) conserved, the spin conductivity is (approximately) equal to the spin-Chern number. The method relies on the characterization of a non-equilibrium almost-stationary state (NEASS), which well approximates the physical state of the system (in the sense of space-adiabatic perturbation theory) and allows moreover to compute the response of the adiabatic S-current as the trace per unit volume of the S-current operator times the NEASS. This technique can be applied in a general framework, which includes both discrete and continuum models

    Gell-Mann and Low formula for degenerate unperturbed states

    Full text link
    The Gell-Mann and Low switching allows to transform eigenstates of an unperturbed Hamiltonian H0H_0 into eigenstates of the modified Hamiltonian H0+VH_0 + V. This switching can be performed when the initial eigenstate is not degenerate, under some gap conditions with the remainder of the spectrum. We show here how to extend this approach to the case when the ground state of the unperturbed Hamiltonian is degenerate. More precisely, we prove that the switching procedure can still be performed when the initial states are eigenstates of the finite rank self-adjoint operator \cP_0 V \cP_0, where \cP_0 is the projection onto a degenerate eigenspace of H0H_0

    Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions

    Full text link
    We consider a periodic Schroedinger operator and the composite Wannier functions corresponding to a relevant family of its Bloch bands, separated by a gap from the rest of the spectrum. We study the associated localization functional introduced by Marzari and Vanderbilt, and we prove some results about the existence and exponential localization of its minimizers, in dimension d < 4. The proof exploits ideas and methods from the theory of harmonic maps between Riemannian manifolds.Comment: 37 pages, no figures. V2: the appendix has been completely rewritten. V3: final version, to appear in Commun. Math. Physic

    On the exit statistics theorem of many particle quantum scattering

    Full text link
    We review the foundations of the scattering formalism for one particle potential scattering and discuss the generalization to the simplest case of many non interacting particles. We point out that the "straight path motion" of the particles, which is achieved in the scattering regime, is at the heart of the crossing statistics of surfaces, which should be thought of as detector surfaces. We sketch a proof of the relevant version of the many particle flux across surfaces theorem and discuss what needs to be proven for the foundations of scattering theory in this context.Comment: 15 pages, 4 figures; to appear in the proceedings of the conference "Multiscale methods in Quantum Mechanics", Accademia dei Lincei, Rome, December 16-20, 200

    Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential

    Full text link
    Coupled-mode systems are used in physical literature to simplify the nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic potential and to approximate localized solutions called gap solitons by analytical expressions involving hyperbolic functions. We justify the use of the one-dimensional stationary coupled-mode system for a relevant elliptic problem by employing the method of Lyapunov--Schmidt reductions in Fourier space. In particular, existence of periodic/anti-periodic and decaying solutions is proved and the error terms are controlled in suitable norms. The use of multi-dimensional stationary coupled-mode systems is justified for analysis of bifurcations of periodic/anti-periodic solutions in a small multi-dimensional periodic potential.Comment: 18 pages, no figure

    Semi- and Non-relativistic Limit of the Dirac Dynamics with External Fields

    Full text link
    We show how to approximate Dirac dynamics for electronic initial states by semi- and non-relativistic dynamics. To leading order, these are generated by the semi- and non-relativistic Pauli hamiltonian where the kinetic energy is related to m2+ξ2\sqrt{m^2 + \xi^2} and ξ2/2m\xi^2 / 2m, respectively. Higher-order corrections can in principle be computed to any order in the small parameter v/c which is the ratio of typical speeds to the speed of light. Our results imply the dynamics for electronic and positronic states decouple to any order in v/c << 1. To decide whether to get semi- or non-relativistic effective dynamics, one needs to choose a scaling for the kinetic momentum operator. Then the effective dynamics are derived using space-adiabatic perturbation theory by Panati et. al with the novel input of a magnetic pseudodifferential calculus adapted to either the semi- or non-relativistic scaling.Comment: 42 page

    Semiclassical approximations for Hamiltonians with operator-valued symbols

    Full text link
    We consider the semiclassical limit of quantum systems with a Hamiltonian given by the Weyl quantization of an operator valued symbol. Systems composed of slow and fast degrees of freedom are of this form. Typically a small dimensionless parameter ε≪1\varepsilon\ll 1 controls the separation of time scales and the limit ε→0\varepsilon\to 0 corresponds to an adiabatic limit, in which the slow and fast degrees of freedom decouple. At the same time ε→0\varepsilon\to 0 is the semiclassical limit for the slow degrees of freedom. In this paper we show that the ε\varepsilon-dependent classical flow for the slow degrees of freedom first discovered by Littlejohn and Flynn, coming from an \epsi-dependent classical Hamilton function and an ε\varepsilon-dependent symplectic form, has a concrete mathematical and physical meaning: Based on this flow we prove a formula for equilibrium expectations, an Egorov theorem and transport of Wigner functions, thereby approximating properties of the quantum system up to errors of order ε2\varepsilon^2. In the context of Bloch electrons formal use of this classical system has triggered considerable progress in solid state physics. Hence we discuss in some detail the application of the general results to the Hofstadter model, which describes a two-dimensional gas of non-interacting electrons in a constant magnetic field in the tight-binding approximation.Comment: Final version to appear in Commun. Math. Phys. Results have been strengthened with only minor changes to the proofs. A section on the Hofstadter model as an application of the general theory was added and the previous section on other applications was remove

    Effective dynamics for particles coupled to a quantized scalar field

    Full text link
    We consider a system of N non-relativistic spinless quantum particles (``electrons'') interacting with a quantized scalar Bose field (whose excitations we call ``photons''). We examine the case when the velocity v of the electrons is small with respect to the one of the photons, denoted by c (v/c= epsilon << 1). We show that dressed particle states exist (particles surrounded by ``virtual photons''), which, up to terms of order (v/c)^3, follow Hamiltonian dynamics. The effective N-particle Hamiltonian contains the kinetic energies of the particles and Coulomb-like pair potentials at order (v/c)^0 and the velocity dependent Darwin interaction and a mass renormalization at order (v/c)^{2}. Beyond that order the effective dynamics are expected to be dissipative. The main mathematical tool we use is adiabatic perturbation theory. However, in the present case there is no eigenvalue which is separated by a gap from the rest of the spectrum, but its role is taken by the bottom of the absolutely continuous spectrum, which is not an eigenvalue. Nevertheless we construct approximate dressed electrons subspaces, which are adiabatically invariant for the dynamics up to order (v/c)\sqrt{\ln (v/c)^{-1}}. We also give an explicit expression for the non adiabatic transitions corresponding to emission of free photons. For the radiated energy we obtain the quantum analogue of the Larmor formula of classical electrodynamics.Comment: 67 pages, 2 figures, version accepted for publication in Communications in Mathematical Physic

    Gauge-theoretic invariants for topological insulators: A bridge between Berry, Wess-Zumino, and Fu-Kane-Mele

    Full text link
    We establish a connection between two recently-proposed approaches to the understanding of the geometric origin of the Fu-Kane-Mele invariant FKM∈Z2\mathrm{FKM} \in \mathbb{Z}_2, arising in the context of 2-dimensional time-reversal symmetric topological insulators. On the one hand, the Z2\mathbb{Z}_2 invariant can be formulated in terms of the Berry connection and the Berry curvature of the Bloch bundle of occupied states over the Brillouin torus. On the other, using techniques from the theory of bundle gerbes it is possible to provide an expression for FKM\mathrm{FKM} containing the square root of the Wess-Zumino amplitude for a certain U(N)U(N)-valued field over the Brillouin torus. We link the two formulas by showing directly the equality between the above mentioned Wess-Zumino amplitude and the Berry phase, as well as between their square roots. An essential tool of independent interest is an equivariant version of the adjoint Polyakov-Wiegmann formula for fields T2→U(N)\mathbb{T}^2 \to U(N), of which we provide a proof employing only basic homotopy theory and circumventing the language of bundle gerbes.Comment: 23 pages, 1 figure. To appear in Letters in Mathematical Physic
    • …
    corecore