362 research outputs found
Recommended from our members
A Family of Flexures That Eliminate Underconstraint in Nested Large-Stroke Flexure Systems
Recommended from our members
Design of Flexure-based Precision Transmission Mechanisms using Screw Theory
This paper enables the synthesis of flexure-based transmission mechanisms that possess multiple decoupled inputs and outputs of any type (e.g. rotations, translations, and/or screw motions), which are linked by designer-specified transmission ratios. A comprehensive library of geometric shapes is utilized from which every feasible concept that possesses the desired transmission characteristics may be rapidly conceptualized and compared before an optimal concept is selected. These geometric shapes represent the rigorous mathematics of screw theory and uniquely link a body's desired motions to the flexible constraints that enable those motions. This paper's impact is most significant to the design of nano-positioners, microscopy stages, optical mounts, and sensors. A flexure-based microscopy stage was designed, fabricated, and tested to demonstrate the utility of the theory
Safety and patient outcomes with lubiprostone for up to 52 weeks in patients with irritable bowel syndrome with constipation
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90244/1/apt4983.pd
Exploitation of Dynamic Communication Patterns through Static Analysis
Abstract not provide
Nonprofit governance: Improving performance in troubled economic times
Nonprofit management is currently pressured to perform effectively in a weak economy. Yet, nonprofit governance continues to suffer from unclear conceptions of the division of labor between board of directors and executive directors. This online survey of 114 executive directors aims to provide clarification and recommendations for social administration
Discontinuous transitions in double exchange materials
It is shown that the double exchange Hamiltonian, with weak antiferromagnetic
interactions, has a rich variety of first order transitions between phases with
different electronic densities and/or magnetizations. For band fillings in the
range , and at finite temperatures, a discontinuous
transition between phases with similar electronic densities but different
magnetizations takes place. This sharp transition, which is not suppressed by
electrostatic effects, and survives in the presence of an applied field, is
consistent with the phenomenology of the doped manganites near the transition
temperature.Comment: three more variational ansatzs considere
Energy aware approach for HPC systems
International audienceHigh‐performance computing (HPC) systems require energy during their full life cycle from design and production to transportation to usage and recycling/dismanteling. Because of increase of ecological and cost awareness, energy performance is now a primary focus. This chapter focuses on the usage aspect of HPC and how adapted and optimized software solutions could improve energy efficiency. It provides a detailed explanation of server power consumption, and discusses the application of HPC, phase detection, and phase identification. The chapter also suggests that having the load and memory access profiles is insufficient for an effective evaluation of the power consumed by an application. The available leverages in HPC systems are also shown in detail. The chapter proposes some solutions for modeling the power consumption of servers, which allows designing power prediction models for better decision making.These approaches allow the deployment and usage of a set of available green leverages, permitting energy reduction
Characterization of 30 Ge enriched Broad Energy Ge detectors for GERDA Phase II
The GERmanium Detector Array (GERDA) is a low background experiment located
at the Laboratori Nazionali del Gran Sasso in Italy, which searches for
neutrinoless double beta decay of Ge into Se+2e. GERDA has
been conceived in two phases. Phase II, which started in December 2015,
features several novelties including 30 new Ge detectors. These were
manufactured according to the Broad Energy Germanium (BEGe) detector design
that has a better background discrimination capability and energy resolution
compared to formerly widely-used types. Prior to their installation, the new
BEGe detectors were mounted in vacuum cryostats and characterized in detail in
the HADES underground laboratory in Belgium. This paper describes the
properties and the overall performance of these detectors during operation in
vacuum. The characterization campaign provided not only direct input for GERDA
Phase II data collection and analyses, but also allowed to study detector
phenomena, detector correlations as well as to test the strength of pulse shape
simulation codes.Comment: 29 pages, 18 figure
Background free search for neutrinoless double beta decay with GERDA Phase II
The Standard Model of particle physics cannot explain the dominance of matter
over anti-matter in our Universe. In many model extensions this is a very
natural consequence of neutrinos being their own anti-particles (Majorana
particles) which implies that a lepton number violating radioactive decay named
neutrinoless double beta () decay should exist. The detection
of this extremely rare hypothetical process requires utmost suppression of any
kind of backgrounds.
The GERDA collaboration searches for decay of Ge
(^{76}\rm{Ge} \rightarrow\,^{76}\rm{Se} + 2e^-) by operating bare detectors
made from germanium with enriched Ge fraction in liquid argon. Here, we
report on first data of GERDA Phase II. A background level of
cts/(keVkgyr) has been achieved which is the world-best if
weighted by the narrow energy-signal region of germanium detectors. Combining
Phase I and II data we find no signal and deduce a new lower limit for the
half-life of yr at 90 % C.L. Our sensitivity of
yr is competitive with the one of experiments with
significantly larger isotope mass.
GERDA is the first experiment that will be background-free
up to its design exposure. This progress relies on a novel active veto system,
the superior germanium detector energy resolution and the improved background
recognition of our new detectors. The unique discovery potential of an
essentially background-free search for decay motivates a
larger germanium experiment with higher sensitivity.Comment: 14 pages, 9 figures, 1 table; ; data, figures and images available at
http://www.mpi-hd.mpg/gerda/publi
- …