2 research outputs found

    Mid-Holocene intensification of Southern Hemisphere westerly winds and implications for regional climate dynamics

    No full text
    The Southern Hemisphere westerly winds (SWW), a belt of strong zonal winds in the mid-latitudes, play a key role in Southern Hemisphere climate variability. Recent intensification and southwards migration of the SWW is projected to continue due to anthropogenic climate change and despite a recovering Antarctic ozone hole, impacting regional hydroclimate, ocean circulation and carbon cycling. Despite the importance of the SWW, our understanding of their behaviour on centennial to millennial timescales is limited by the inherently short observational record and limited palaeo-archive agreement on the wind belt's Holocene dynamics. Here we utilise dust flux, Itrax core scanning, rare earth element composition and HYSPLIT particle modelling to present a 8700-year (10,500–1700 cal yr BP) reconstruction of local SWW intensity from a Falkland Islands (Islas Malvinas) peat sediment core which, along with other reconstructions, we interpret in a regional South Atlantic and hemispheric context. We find increased dust deposition and variability from ca. 5700 cal yr BP, signalling an intensification and possible southwards shift of the SWW, though Patagonia likely remains the primary distal dust source throughout our record. Additionally, we identify asymmetric behaviour in the SWW belt from 3000 to 1700 cal yr BP over southern South America and the southwest Atlantic. In alignment with these findings, we propose a possible eastwards projection of the Amundsen Sea Low (ASL) into the South Atlantic during this period. Two volcanic eruptions, likely from Mt Burney (ca. 9700 cal yr BP) and Mt Hudson (ca. 4100 cal yr BP), are captured as cryptotephra deposits in the record. Our precisely dated, high-resolution multiproxy record of South Atlantic wind-blown transport provides an important new dataset that accurately constrains SWW Holocene variability over the Falkland Islands.</p

    Distal ash fall from the mid-Holocene eruption of Mount Hudson (H2) discovered in the Falkland Islands: New possibilities for Southern Hemisphere archive synchronisation

    No full text
    Cryptotephra deposits (microscopic volcanic ash) are important geochronological tools that can be used to synchronize records of past environmental change. Here we report a distal cryptotephra from a Holocene peat sequence (Canopus Hill) in the Falkland Islands, in the South Atlantic. Using geochemical analysis (major- and trace-element) of individual volcanic glass shards, we provide a robust correlation between this cryptotephra and the large mid-Holocene explosive eruption of Mt. Hudson in Patagonia, Chile (H2; ∼3.9 ka cal BP). The occurrence of H2 as a cryptotephra in the Falkland Islands significantly increases the known distribution of this marker horizon to more than 1200 km from the volcano, a threefold increase of its previous known extent. A high-resolution radiocarbon chronology, based on terrestrial plant macrofossils, dates the H2 tephra to 4265 ± 65 cal yr BP, suggesting that the eruption may have occurred slightly earlier than previously reported. The refined age and new geochemical reference dataset will facilitate the identification of the H2 tephra in other distal locations. The high concentration of glass shards in our peat sequence indicates that the H2 tephra may extend well beyond the Falkland Islands and we recommend future studies search for its presence across the sub-Antarctic islands and Antarctic Peninsula as a potentially useful chronological marker
    corecore