1,107 research outputs found

    Effects of doping on thermally excited quasiparticles in the high-TcT_c superconducting state

    Full text link
    The physical properties of low energy superconducting quasiparticles in high- TcT_c superconductors are examined using magnetic penetration depth and specific heat experimental data. We find that the low energy density of states of quasiparticles of La2−x_{2-x}Srx_xCuO4_4 scales with (x−xc)/Tc(x-x_c)/T_c to the leading order approximation, where xcx_c is the critical doping concentration below which Tc=0T_c=0. The linear temperature term of the superfluid density is renormalized by quasiparticle interactions and the renormalization factor times the Fermi velocity is found to be doping independent.Comment: 3 pages, 3 figures, minor change to the content, fig1 is reploted, to appear in Phys Rev

    Low Temperature Superfluid Response of High-Tc Superconductors

    Full text link
    We have reviewed our theoretical and experimental results of the low temperature superfluid response function of high temperature superconductors (HTSC). In clean high-Tc materials the in-plane superfluid density rho_s^{ab} varies linearly with temperature. The slope of this linear T term is found to scale approximately with 1/Tc which, according to the weak coupling BCS theory for a d-wave superconductor, implies that the gap amplitude scales approximately with Tc. A T^5 behavior of the out-of-plane superfluid density rho_s^c for clean tetragonal HTSC was predicted and observed experimentally in the single layer Hg-compound HgBa_2CuO_{4+delta}. In other tetragonal high-Tc compounds with relatively high anisotropy, such as Hg_2Ba_2Ca_2Cu_3O_{8+delta}, rho_s^c varies as T^2 due to disorder effects. In optimally doped YBa_2Cu_3O_{7-delta}, rho_s^c varies linearly with temperature at low temperatures, but in underdoped YBa_2Cu_3O_{7-delta}, rho_s^c varies as T^2 at low temperatures; these results are consistent with our theoretical calculations.Comment: 26 pages, 8 figure

    Systematic behaviour of the in-plane penetration depth in d-wave cuprates

    Full text link
    We report the temperature T and oxygen concentration dependences of the penetration depth of grain-aligned YBa_2Cu_3O_{7-\delta} with \delta= 0.0, 0.3 and 0.43. The values of the in-plane \lambda_{ab}(0) and out-of-plane \lambda_{c}(0) penetration depths, the low temperature linear term in \lambda_{ab}(T), and the ratio \lambda_{c}(0) /\lambda_{ab}(T) were found to increase with increasing δ\delta. The systematic changes of the linear term in \lambda_{ab}(T) with T_c found here and in recent work on HgBa_2Ca_{n-1} Cu_nO_{2n+2+\delta} (n = 1 and 3) are discussed.Comment: 4 pages, 4 figure

    Metallic characteristics in superlattices composed of insulators, NdMnO3/SrMnO3/LaMnO3

    Full text link
    We report on the electronic properties of superlattices composed of three different antiferromagnetic insulators, NdMnO3/SrMnO3/LaMnO3 grown on SrTiO3 substrates. Photoemission spectra obtained by tuning the x-ray energy at the Mn 2p -> 3d edge show a Fermi cut-off, indicating metallic behavior mainly originating from Mn e_g electrons. Furthermore, the density of states near the Fermi energy and the magnetization obey a similar temperature dependence, suggesting a correlation between the spin and charge degrees of freedom at the interfaces of these oxides

    Enhanced and continuous electrostatic carrier doping on the SrTiO3_{3} surface

    Get PDF
    Paraelectrical tuning of a charge carrier density as high as 1013^{13}\,cm−2^{-2} in the presence of a high electronic carrier mobility on the delicate surfaces of correlated oxides, is a key to the technological breakthrough of a field effect transistor (FET) utilising the metal-nonmetal transition. Here we introduce the Parylene-C/Ta2_{2}O5_{5} hybrid gate insulator and fabricate FET devices on single-crystalline SrTiO3_{3}, which has been regarded as a bedrock material for oxide electronics. The gate insulator accumulates up to ∼1013\sim10^{13}cm−2^{-2} carriers, while the field-effect mobility is kept at 10\,cm2^2/Vs even at room temperature. Further to the exceptional performance of our devices, the enhanced compatibility of high carrier density and high mobility revealed the mechanism for the long standing puzzle of the distribution of electrostatically doped carriers on the surface of SrTiO3_{3}. Namely, the formation and continuous evolution of field domains and current filaments.Comment: Supplementary Information: <http://www.nature.com/srep/2013/130424/srep01721/extref/srep01721-s1.pdf

    Emergent properties hidden in plane view: Strong electronic correlations at oxide interfaces

    Full text link
    Finding new collective electronic states in materials is one of the fundamental goals of condensed matter physics. Atomic-scale superlattices formed from transition metal oxides are a particularly appealing hunting ground for new physics. In bulk form, transition metal oxides exhibit a remarkable range of magnetic, superconducting, and multiferroic phases that are of great scientific interest and are potentially capable of providing innovative energy, security, electronics and medical technology platforms. In superlattices new states may emerge at the interfaces where dissimilar materials meet. Here we illustrate the essential features that make transition metal oxide-based heterostructures an appealing discovery platform for emergent properties with a few selected examples, showing how charge redistributes, magnetism and orbital polarization arises and ferroelectric order emerges from heterostructures comprised of oxide components with nominally contradictory behavior with the aim providing insight into the creation and control of novel behavior at oxide interfaces by suitable mechanical, electrical or optical boundary conditions and excitations.Comment: 16 pages, 5 figure

    Theory of the magnetoeletric effect in a lightly doped high-Tc cuprate

    Get PDF
    In a recent study Viskadourakis et al. discovered that extremely underdoped La_2CuO_(4+x) is a relaxor ferroelectric and a magnetoelectric material at low temperatures. It is further observed that the magnetoelectric response is anisotropic for different directions of electric polarization and applied magnetic field. By constructing an appropriate Landau theory, we show that a bi-quadratic magnetoelectric coupling can explain the experimentally observed polarization dependence on magnetic field. This coupling leads to several novel low-temperature effects including a feedback enhancement of the magnetization below the ferroelectric transition, and a predicted magnetocapacitive effect.Comment: 5 pages, 4 figure

    Penetration Depth Measurements in MgB_2: Evidence for Unconventional Superconductivity

    Full text link
    We have measured the magnetic penetration depth of the recently discovered binary superconductor MgB_2 using muon spin rotation and low field acac-susceptibility. From the damping of the muon precession signal we find the penetration depth at zero temperature is about 85nm. The low temperature penetration depth shows a quadratic temperature dependence, indicating the presence of nodes in the superconducting energy gap.Comment: 4 pages 3 figure
    • …
    corecore