10 research outputs found

    Neuroprotection from inflammation: Experimental allergic encephalomyelitis facilitates traumatic spinal cord injury recovery

    Get PDF
    Passive immunization with T cells activated against central nervous system (CNS) - associated myelin antigens has been found to provide neuroprotection following CNS trauma, leading to the concept of protective autoimmunity. However, limited research exists about whether actively induced CNS autoimmunity may offer any similar benefit. In this study, the kinetics and the effect of endogenously anti-myelin activated T cells following spinal cord injury (SCI), were investigated. Experimental allergic encephalomyelitis (EAE) was actively induced in Lewis rats following immunization with myelin basic protein (MBP). In vivo 5-Bromo-2-deoxyuridine (BrdU) incorporation from activated T cells was used as a marker of T cell- proliferation. BrdU was injected on 5th, 6th and 7th day post-induction (DPI) at all EAE-animals. On DPI 8, spinal cord compressive injury was induced by a transient extradural application of an aneurysm clip at the T8 spinal level. SCI resulted in spastic paralysis of hindlimbs, in all but sham-injured animals. Recovery from SCI was significantly better in EAE-animals. Activated mononuclear cells were selectively accumulated at the site of the injury. Axonal loss was less in the EAE group following SCI. Our findings indicate that actively induced autoimmunity against CNS myelin antigens may protect spinal cord pathways from mechanical injury

    Volumetric and MGMT parameters in glioblastoma patients: Survival analysis

    No full text
    Abstract Background In this study several tumor-related volumes were assessed by means of a computer-based application and a survival analysis was conducted to evaluate the prognostic significance of pre- and postoperative volumetric data in patients harboring glioblastomas. In addition, MGMT (O6-methylguanine methyltransferase) related parameters were compared with those of volumetry in order to observe possible relevance of this molecule in tumor development. Methods We prospectively analyzed 65 patients suffering from glioblastoma (GBM) who underwent radiotherapy with concomitant adjuvant temozolomide. For the purpose of volumetry T1 and T2-weighted magnetic resonance (MR) sequences were used, acquired both pre- and postoperatively (pre-radiochemotherapy). The volumes measured on preoperative MR images were necrosis, enhancing tumor and edema (including the tumor) and on postoperative ones, net-enhancing tumor. Age, sex, performance status (PS) and type of operation were also included in the multivariate analysis. MGMT was assessed for promoter methylation with Multiplex Ligation-dependent Probe Amplification (MLPA), for RNA expression with real time PCR, and for protein expression with immunohistochemistry in a total of 44 cases with available histologic material. Results In the multivariate analysis a negative impact was shown for pre-radiochemotherapy net-enhancing tumor on the overall survival (OS) (p = 0.023) and for preoperative necrosis on progression-free survival (PFS) (p = 0.030). Furthermore, the multivariate analysis confirmed the importance of PS in PFS and OS of patients. MGMT promoter methylation was observed in 13/23 (43.5%) evaluable tumors; complete methylation was observed in 3/13 methylated tumors only. High rate of MGMT protein positivity (> 20% positive neoplastic nuclei) was inversely associated with pre-operative tumor necrosis (p = 0.021). Conclusions Our findings implicate that volumetric parameters may have a significant role in the prognosis of GBM patients. Furthermore, volumetry could help not only to improve the prediction of outcome but also the outcome itself by identifying patients at high risk of treatment failure and, thus, seek alternative treatment for these patients. In this small series, MGMT protein was associated with less aggressive tumor characteristics.</p
    corecore