12,393 research outputs found
A progressive diagonalization scheme for the Rabi Hamiltonian
A diagonalization scheme for the Rabi Hamiltonian, which describes a qubit
interacting with a single-mode radiation field via a dipole interaction, is
proposed. It is shown that the Rabi Hamiltonian can be solved almost exactly
using a progressive scheme that involves a finite set of one variable
polynomial equations. The scheme is especially efficient for lower part of the
spectrum. Some low-lying energy levels of the model with several sets of
parameters are calculated and compared to those provided by the recently
proposed generalized rotating-wave approximation and full matrix
diagonalization.Comment: 8pages, 1 figure, LaTeX. Accepted for publication in J. Phys. B: At.
Mol. Opt. Phy
Resonance structure in the Li^- photodetachment cross section
We report on the first observation of resonance structure in the total cross
section for the photodetachment of Li^-. The structure arises from the
autodetaching decay of doubly excited ^1P states of Li^- that are bound with
respect to the 3p state of the Li atom. Calculations have been performed for
both Li^- and H^- to assist in the identification of these resonances. The
lowest lying resonance is a symmetrically excited intrashell resonance. Higher
lying asymmetrically excited intershell states are observed which converge on
the Li(3p) limit.Comment: 4 pages, 2 figure, 19 references, RevTeX, figures in ep
Terahertz magneto-optical spectroscopy of two-dimensional hole and electron systems
We have used terahertz (THz) magneto-optical spectroscopy to investigate the
cyclotron resonance in high mobility two-dimensional electron and hole systems.
Our experiments reveal long-lived (~20 ps) coherent oscillations in the
measured signal in the presence of a perpendicular magnetic field. The
cyclotron frequency extracted from the oscillations varies linearly with
magnetic field for a two-dimensional electron gas (2DEG), as expected. However,
we find that the complex non-parabolic valence band structure in a
two-dimensional hole gas (2DHG) causes the cyclotron frequency and effective
mass to vary nonlinearly with the magnetic field, as verified by multiband
Landau level calculations. This is the first time that THz magneto-optical
spectroscopy has been used to study 2DHG, and we expect that these results will
motivate further studies of these unique 2D nanosystems.Comment: 11 pages, 7 figure
Electronic Theory for the Nonlinear Magneto-Optical Response of Transition-Metals at Surfaces and Interfaces: Dependence of the Kerr-Rotation on Polarization and on the Magnetic Easy Axis
We extend our previous study of the polarization dependence of the nonlinear
optical response to the case of magnetic surfaces and buried magnetic
interfaces. We calculate for the longitudinal and polar configuration the
nonlinear magneto-optical Kerr rotation angle. In particular, we show which
tensor elements of the susceptibilities are involved in the enhancement of the
Kerr rotation in nonlinear optics for different configurations and we
demonstrate by a detailed analysis how the direction of the magnetization and
thus the easy axis at surfaces and buried interfaces can be determined from the
polarization dependence of the nonlinear magneto-optical response, since the
nonlinear Kerr rotation is sensitive to the electromagnetic field components
instead of merely the intensities. We also prove from the microscopic treatment
of spin-orbit coupling that there is an intrinsic phase difference of
90 between tensor elements which are even or odd under magnetization
reversal in contrast to linear magneto-optics. Finally, we compare our results
with several experiments on Co/Cu films and on Co/Au and Fe/Cr multilayers. We
conclude that the nonlinear magneto-optical Kerr-effect determines uniquely the
magnetic structure and in particular the magnetic easy axis in films and at
multilayer interfaces.Comment: 23 pages Revtex, preprintstyle, 2 uuencoded figure
Microbial catabolic activities are naturally selected by metabolic energy harvest rate
The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate
Highly Anisotropic Transport in the Integer Quantum Hall Effect
At very large tilt of the magnetic (B) field with respect to the plane of a
two-dimensional electron system the transport in the integer quantum Hall
regime at = 4, 6, and 8 becomes strongly anisotropic. At these filling
factors the usual {\em deep minima} in the magneto-resistance occur for the
current flowing {\em perpendicular} to the in-plane B field direction but
develop into {\em strong maxima} for the current flowing {\em parallel} to the
in-plane B field. The origin of this anisotropy is unknown but resembles the
recently observed anisotropy at half-filled Landau levels.Comment: 4 pages, 4 figure
Phase behavior and material properties of hollow nanoparticles
Effective pair potentials for hollow nanoparticles like the ones made from
carbon (fullerenes) or metal dichalcogenides (inorganic fullerenes) consist of
a hard core repulsion and a deep, but short-ranged, van der Waals attraction.
We investigate them for single- and multi-walled nanoparticles and show that in
both cases, in the limit of large radii the interaction range scales inversely
with the radius, , while the well depth scales linearly with . We predict
the values of the radius and the wall thickness at which the gas-liquid
coexistence disappears from the phase diagram. We also discuss unusual material
properties of the solid, which include a large heat of sublimation and a small
surface energy.Comment: Revtex, 13 pages with 8 Postscript files included, submitted to Phys.
Rev.
Multiple dynamical time-scales in networks with hierarchically nested modular organization
Many natural and engineered complex networks have intricate mesoscopic
organization, e.g., the clustering of the constituent nodes into several
communities or modules. Often, such modularity is manifested at several
different hierarchical levels, where the clusters defined at one level appear
as elementary entities at the next higher level. Using a simple model of a
hierarchical modular network, we show that such a topological structure gives
rise to characteristic time-scale separation between dynamics occurring at
different levels of the hierarchy. This generalizes our earlier result for
simple modular networks, where fast intra-modular and slow inter-modular
processes were clearly distinguished. Investigating the process of
synchronization of oscillators in a hierarchical modular network, we show the
existence of as many distinct time-scales as there are hierarchical levels in
the system. This suggests a possible functional role of such mesoscopic
organization principle in natural systems, viz., in the dynamical separation of
events occurring at different spatial scales.Comment: 10 pages, 4 figure
Turbulence in a free surface
We report an experimental and numerical study of turbulent fluid motion in a
free surface. The flow is realized experimentally on the surface of a tank
filled with water stirred by a vertically oscillating grid positioned well
below the surface. Particles floating on the surface are used to visualize the
flow. The effect of surface waves appears to be negligible. The flow is
unconventional in that it is confined to two dimensions but does not have
squared vorticity as a conservation law, that it is not divergence free and
that it inherits scaling features of the mean square velocity differences
S_2(R) and the vorticity fluctuations Omega(R) from the bulk 3-d turbulence.Comment: 4 pages, 4 Postscript figure
Nonlinear Magneto-Optical Response of - and -Wave Superconductors
The nonlinear magneto-optical response of - and -wave superconductors
is discussed. We carry out the symmetry analysis of the nonlinear
magneto-optical susceptibility in the superconducting state. Due to the surface
sensitivity of the nonlinear optical response for systems with bulk inversion
symmetry, we perform a group theoretical classification of the superconducting
order parameter close to a surface. For the first time, the mixing of singlet
and triplet pairing states induced by spin-orbit coupling is systematically
taken into account. We show that the interference of singlet and triplet
pairing states leads to an observable contribution of the nonlinear
magneto-optical Kerr effect. This effect is not only sensitive to the
anisotropy of the gap function but also to the symmetry itself. In view of the
current discussion of the order parameter symmetry of High-T
superconductors, results for a tetragonal system with bulk singlet pairing for
various pairing symmetries are discussed.Comment: 21 pages (REVTeX) with 8 figures (Postscript
- …