23 research outputs found

    Degree of Change in Bystander Cardiopulmonary Resuscitation Rate During the Onset of the Global COVID-19 Pandemic in the State of Michigan

    Full text link
    The purpose of this study is to understand how COVID-19 has affected bystander performance of cardiopulmonary resuscitation (CPR) for out-of-hospital cardiac arrest (OHCA) patients. Studies have shown that bystander CPR can double or triple a person's chance of survival. However, during the onset and aftermath of the global COVID-19 pandemic, the risk for COVID-19 exposure during CPR for OHCA is a significant concern for bystanders. I hypothesize that, as a result of COVID-19 pandemic, the rates of bystander CPR have decreased significantly. To test this hypothesis, I conducted a quantitative research study by using data from the Cardiac Arrest Registry to Enhance Survival (CARES) registry - a nationwide central registry of OHCA data collected from emergency medical services (EMS) agencies. For this study, Michigan CARES data from January 1 to June 30, 2019 and from January 1 to June 30, 2020 were compared. In a comparison of 844 OHCA in 2019 and 8591 in 2020, the proportion of cases receiving bystander CPR was lower in 2020 (25% vs 28%, p = 0.78); An increased proportion of OHCA occurred in the home (86% vs. 82%, p = 0.44), and decreased proportion in public spaces (14% vs 18%, p = 0.16). There were more monthly OHCA cases overall on average (143 vs 141, p = 0.79) and the survival to hospital admission rate was lower during pandemic period (25% vs 28%, p = 0.24). Per my analysis, the decrease in the rate of bystander CPR in 2020 during the pandemic is not statistically significant. However, it is reassuring that the COVID-19 pandemic did not seem to significant impact the rate of bystander CPR as we know that early CPR is critical to optimal outcomes for people experiencing OHCA and for the professionals who work to maximize the rate of bystander CPR during OHCA.Master of Health InformaticsSchool of Informationhttp://deepblue.lib.umich.edu/bitstream/2027.42/168559/1/20210427_Pan,Helen[Yunzhu]_Final_MTOP_Thesis.pd

    An Image Dataset for Benchmarking Recommender Systems with Raw Pixels

    Full text link
    Recommender systems (RS) have achieved significant success by leveraging explicit identification (ID) features. However, the full potential of content features, especially the pure image pixel features, remains relatively unexplored. The limited availability of large, diverse, and content-driven image recommendation datasets has hindered the use of raw images as item representations. In this regard, we present PixelRec, a massive image-centric recommendation dataset that includes approximately 200 million user-image interactions, 30 million users, and 400,000 high-quality cover images. By providing direct access to raw image pixels, PixelRec enables recommendation models to learn item representation directly from them. To demonstrate its utility, we begin by presenting the results of several classical pure ID-based baseline models, termed IDNet, trained on PixelRec. Then, to show the effectiveness of the dataset's image features, we substitute the itemID embeddings (from IDNet) with a powerful vision encoder that represents items using their raw image pixels. This new model is dubbed PixelNet.Our findings indicate that even in standard, non-cold start recommendation settings where IDNet is recognized as highly effective, PixelNet can already perform equally well or even better than IDNet. Moreover, PixelNet has several other notable advantages over IDNet, such as being more effective in cold-start and cross-domain recommendation scenarios. These results underscore the importance of visual features in PixelRec. We believe that PixelRec can serve as a critical resource and testing ground for research on recommendation models that emphasize image pixel content. The dataset, code, and leaderboard will be available at https://github.com/westlake-repl/PixelRec

    Understanding and Modeling Passive-Negative Feedback for Short-video Sequential Recommendation

    Full text link
    Sequential recommendation is one of the most important tasks in recommender systems, which aims to recommend the next interacted item with historical behaviors as input. Traditional sequential recommendation always mainly considers the collected positive feedback such as click, purchase, etc. However, in short-video platforms such as TikTok, video viewing behavior may not always represent positive feedback. Specifically, the videos are played automatically, and users passively receive the recommended videos. In this new scenario, users passively express negative feedback by skipping over videos they do not like, which provides valuable information about their preferences. Different from the negative feedback studied in traditional recommender systems, this passive-negative feedback can reflect users' interests and serve as an important supervision signal in extracting users' preferences. Therefore, it is essential to carefully design and utilize it in this novel recommendation scenario. In this work, we first conduct analyses based on a large-scale real-world short-video behavior dataset and illustrate the significance of leveraging passive feedback. We then propose a novel method that deploys the sub-interest encoder, which incorporates positive feedback and passive-negative feedback as supervision signals to learn the user's current active sub-interest. Moreover, we introduce an adaptive fusion layer to integrate various sub-interests effectively. To enhance the robustness of our model, we then introduce a multi-task learning module to simultaneously optimize two kinds of feedback -- passive-negative feedback and traditional randomly-sampled negative feedback. The experiments on two large-scale datasets verify that the proposed method can significantly outperform state-of-the-art approaches. The code is released at https://github.com/tsinghua-fib-lab/RecSys2023-SINE.Comment: Accepted by RecSys'2

    Where to Go Next for Recommender Systems? ID- vs. Modality-based Recommender Models Revisited

    Full text link
    Recommendation models that utilize unique identities (IDs) to represent distinct users and items have been state-of-the-art (SOTA) and dominated the recommender systems (RS) literature for over a decade. Meanwhile, the pre-trained modality encoders, such as BERT and ViT, have become increasingly powerful in modeling the raw modality features of an item, such as text and images. Given this, a natural question arises: can a purely modality-based recommendation model (MoRec) outperforms or matches a pure ID-based model (IDRec) by replacing the itemID embedding with a SOTA modality encoder? In fact, this question was answered ten years ago when IDRec beats MoRec by a strong margin in both recommendation accuracy and efficiency. We aim to revisit this `old' question and systematically study MoRec from several aspects. Specifically, we study several sub-questions: (i) which recommendation paradigm, MoRec or IDRec, performs better in practical scenarios, especially in the general setting and warm item scenarios where IDRec has a strong advantage? does this hold for items with different modality features? (ii) can the latest technical advances from other communities (i.e., natural language processing and computer vision) translate into accuracy improvement for MoRec? (iii) how to effectively utilize item modality representation, can we use it directly or do we have to adjust it with new data? (iv) are there some key challenges for MoRec to be solved in practical applications? To answer them, we conduct rigorous experiments for item recommendations with two popular modalities, i.e., text and vision. We provide the first empirical evidence that MoRec is already comparable to its IDRec counterpart with an expensive end-to-end training method, even for warm item recommendation. Our results potentially imply that the dominance of IDRec in the RS field may be greatly challenged in the future

    NineRec: A Benchmark Dataset Suite for Evaluating Transferable Recommendation

    Full text link
    Learning a recommender system model from an item's raw modality features (such as image, text, audio, etc.), called MoRec, has attracted growing interest recently. One key advantage of MoRec is that it can easily benefit from advances in other fields, such as natural language processing (NLP) and computer vision (CV). Moreover, it naturally supports transfer learning across different systems through modality features, known as transferable recommender systems, or TransRec. However, so far, TransRec has made little progress, compared to groundbreaking foundation models in the fields of NLP and CV. The lack of large-scale, high-quality recommendation datasets poses a major obstacle. To this end, we introduce NineRec, a TransRec dataset suite that includes a large-scale source domain recommendation dataset and nine diverse target domain recommendation datasets. Each item in NineRec is represented by a text description and a high-resolution cover image. With NineRec, we can implement TransRec models in an end-to-end training manner instead of using pre-extracted invariant features. We conduct a benchmark study and empirical analysis of TransRec using NineRec, and our findings provide several valuable insights. To support further research, we make our code, datasets, benchmarks, and leaderboards publicly available at https://github.com/westlake-repl/NineRec

    Introducing a chaotic component in the control system of soil respiration

    Get PDF
    Chaos theory has been proved to be of great significance in a series of critical applications although, until now, its applications in analyzing soil respiration have not been addressed. This study aims to introduce a chaotic component in the control system of soil respiration and explain control complexity of this nonlinear chaotic system. This also presents a theoretical framework for better understanding chaotic components of soil respiration in arid land. A concept model of processes and mechanisms associated with subterranean CO2 evolution are developed, and dynamics of the chaotic system is characterized as an extended Riccati equation. Controls of soil respiration and kinetics of the chaotic system are interpreted and as a first attempt, control complexity of this nonlinear chaotic system is tackled by introducing a period-regulator in partitioning components of soil respiration

    Exploring Adapter-based Transfer Learning for Recommender Systems: Empirical Studies and Practical Insights

    Full text link
    Adapters, a plug-in neural network module with some tunable parameters, have emerged as a parameter-efficient transfer learning technique for adapting pre-trained models to downstream tasks, especially for natural language processing (NLP) and computer vision (CV) fields. Meanwhile, learning recommendation models directly from raw item modality features -- e.g., texts of NLP and images of CV -- can enable effective and transferable recommender systems (called TransRec). In view of this, a natural question arises: can adapter-based learning techniques achieve parameter-efficient TransRec with good performance? To this end, we perform empirical studies to address several key sub-questions. First, we ask whether the adapter-based TransRec performs comparably to TransRec based on standard full-parameter fine-tuning? does it hold for recommendation with different item modalities, e.g., textual RS and visual RS. If yes, we benchmark these existing adapters, which have been shown to be effective in NLP and CV tasks, in the item recommendation settings. Third, we carefully study several key factors for the adapter-based TransRec in terms of where and how to insert these adapters? Finally, we look at the effects of adapter-based TransRec by either scaling up its source training data or scaling down its target training data. Our paper provides key insights and practical guidance on unified & transferable recommendation -- a less studied recommendation scenario. We promise to release all code & datasets for future research

    MRI Lesion Load of Cerebral Small Vessel Disease and Cognitive Impairment in Patients With CADASIL

    Get PDF
    Background and objective: Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the best known and the most common monogenic small vessel disease (SVD). Cognitive impairment is an inevitable feature of CADASIL. Total SVD score and global cortical atrophy (GCA) scale were found to be good predictors of poor cognitive performance in community-dwelling adults. We aimed to estimate the association between the total SVD score, GCA scale and the cognitive performance in patients with CADASIL.Methods: We enrolled 20 genetically confirmed CADASIL patients and 20 controls matched by age, gender, and years of education. All participants underwent cognitive assessments to rate the global cognition and individual domain of executive function, information processing speed, memory, language, and visuospatial function. The total SVD score and GCA scale were rated.Results: The CADASIL group performed worse than the controls on all cognition measures. Neither global cognition nor any separate domain of cognition was significantly different among patients grouped by total SVD score. Negative correlations between the GCA score and cognitive performance were observed. Approximately 40% of the variance was explained by the total GCA score in the domains of executive function, information processing speed, and language. The superficial atrophy score was associated with poor performance in most of the domains of cognition. Adding the superficial atrophy score decreased the prediction power of the deep atrophy score on cognitive impairment alone.Conclusions: The GCA score, not the total SVD score, was significantly associated with poor cognitive performance in patients with CADASIL. Adding the superficial atrophy score attenuated the prediction power of the deep atrophy score on cognitive impairment alone

    The complete mitochondrial genome of Pheropsophus occipitalis MacLeay, 1825 (Coleoptera: Carabidae)

    No full text
    Pheropsophus occipitalis MacLeay is a predatory enemy prey heavily on agricultural pests. The length of the complete mitochondrial genome of P. occipitalis was 16,800 bp with 20.4% GC content, including 41.2% A, 11.9% C, 8.4% G, 38.5% T. The genome encoded 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), two ribosomal RNA genes (rRNA). Phylogenetic analysis showed that P. occipitalis was clustered with Pheropsophus bimaculatus and Pheropsophus sobrinus. This study provided a scientific basis for the population genetics, phylogeny, and molecular taxonomy of P. occipitalis
    corecore