178 research outputs found
Climate Changes and Trends in Phenology of Woody and Herb Plants in Inner Mongolia, 1981–2010
The phenology of plants is a comprehensive reflection of seasonal climatological and ecological conditions and may be used as an indicator of climate change (Thomas et al. 2000; Volker and Annette 2004; Li et al. 2005). Analysis was made of the dates of sprouting, flowering and defoliating of woody and herb plants observed on 24 Agricultural Meteorological Stations in Inner Mongolia, China from 1980 to 2010. To assess the potential future change data was analysed for the 2011 to 2050 period using the England Hadley Climate Centre scenario (Wei et al. 2012)
1,3-Dibenzyloxy-5-(bromomethyl)benzene
In the title compound, C21H19BrO2, the dihedral angles between the central benzene ring and the two peripheral rings are 50.28 (5) and 69.75 (2)°. The O—CH2 bonds lie in the plane of the central ring and adopt a syn–anti conformation
Flexible heteroarotinoid (Flex-Het) SHetA2 inhibits angiogenesis in vitro and in vivo
Flexible heteroarotinoids (Flex-Hets) compounds regulate growth, differentiation and apoptosis in cancer cells. The hypothesis of this study was that the lead Flex-Het, SHetA2, inhibits angiogenesis by blocking cytokine release from cancer cells. SHetA2 altered secretion of thrombospondin-4 (TSP-4), vascular endothelial growth factor A (VEGF) and fibroblast growth factor (bFGF) proteins from normal and cancerous ovarian and renal cultures. Thymidine phosphorylase (TP) expression was inhibited in cancer, but not normal cultures. Endothelial tube formation was stimulated by conditioned media from cancer but not normal cultures, and SHetA2 reduced secretion of this angiogenic activity. SHetA2 directly inhibited endothelial cell tube formation and proliferation through G1 cell cycle arrest, but not apoptosis. Recombinant TP reversed SHetA2 anti-angiogenic activity. SHetA2 inhibition of in vivo angiogenesis was observed in Caki-1 renal cancer xenografts. In conclusion, SHetA2 inhibits angiogenesis through alteration of angiogenic factor secretion by cancer cells and through direct effects on endothelial cells
Microvascular Endothelial Cells-Derived Microvesicles Imply in Ischemic Stroke by Modulating Astrocyte and Blood Brain Barrier Function and Cerebral Blood Flow
Background Endothelial cell (EC) released microvesicles (EMVs) can affect various target cells by transferring carried genetic information. Astrocytes are the main components of the blood brain barrier (BBB) structure in the brain and participate in regulating BBB integrity and blood flow. The interactions between ECs and astrocytes are essential for BBB integrity in homeostasis and pathological conditions. Here, we studied the effects of human brain microvascular ECs released EMVs on astrocyte functions. Additionally, we investigated the effects of EMVs treated astrocytes on regulating BBB function and cerebral ischemic damage. Results EMVs prepared from ECs cultured in normal condition (n-EMVs) or oxygen and glucose deprivation (OGD-EMVs) condition had diverse effects on astrocytes. The n-EMVs promoted, while the OGD-EMVs inhibited the proliferation of astrocytes via regulating PI3K/Akt pathway. Glial fibrillary acidic protein (GFAP) expression (marker of astrocyte activation) was up-regulated by n-EMVs, while down-regulated by OGD-EMVs. Meanwhile, n-EMVs inhibited but OGD-EMVs promoted the apoptosis of astrocytes accompanied by up/down-regulating the expression of Caspase-9 and Bcl-2. In the BBB model of ECs-astrocytes co-culture, the n-EMVs, conversely to OGD-EMVs, decreased the permeability of BBB accompanied with up-regulation of zonula occudens-1(ZO-1) and Claudin-5. In a transient cerebral ischemia mouse model, n-EMVs ameliorated, while OGD-EMVs aggravated, BBB disruption, local cerebral blood flow (CBF) reduction, infarct volume and neurological deficit score. Conclusions Our data suggest that EMVs diversely modulate astrocyte functions, BBB integrity and CBF, and could serve as a novel therapeutic target for ischemic stroke
miR-132-3p Priming Enhances the Effects of Mesenchymal Stromal Cell-Derived Exosomes on Ameliorating Brain Ischemic Injury
Backgrounds/aims: Mesenchymal stromal cell-derived exosomes (MSC-EXs) could exert protective effects on recipient cells by transferring the contained microRNAs (miRs), and miR-132-3p is one of angiogenic miRs. However, whether the combination of MSC-EXs and miR-132-3p has better effects in ischemic cerebrovascular disease remains unknown. Methods: Mouse MSCs transfected with scrambler control or miR-132-3p mimics were used to generate MSC-EXs and miR-132-3p-overexpressed MSC-EXs (MSC-EXsmiR-132-3p). The effects of EXs on hypoxia/reoxygenation (H/R)-injured ECs in ROS generation, apoptosis, and barrier function were analyzed. The levels of RASA1, Ras, phosphorylations of PI3K, Akt and endothelial nitric oxide synthesis (eNOS), and tight junction proteins (Claudin-5 and ZO-1) were measured. Ras and PI3K inhibitors were used for pathway analysis. In transient middle cerebral artery occlusion (tMCAO) mouse model, the effects of MSC-EXs on the cerebral vascular ROS production and apoptosis, cerebral vascular density (cMVD), Evans blue extravasation, brain water content, neurological deficit score (NDS), and infarct volume were determined. Results: MSC-EXs could deliver their carried miR-132-3p into target ECs, which functionally downregulated the target protein RASA1, while upregulated the expression of Ras and the downstream PI3K phosphorylation. Compared to MSC-EXs, MSC-EXsmiR-132-3p were more effective in decreasing ROS production, apoptosis, and tight junction disruption in H/R-injured ECs. These effects were associated with increased levels of phosphorylated Akt and eNOS, which could be abolished by PI3K inhibitor (LY294002) or Ras inhibitor (NSC 23766). In the tMCAO mouse model, the infusion of MSC-EXsmiR-132-3p was more effective than MSC-EXs in reducing cerebral vascular ROS production, BBB dysfunction, and brain injury. Conclusion: Our results suggest that miR-132-3p promotes the beneficial effects of MSC-EXs on brain ischemic injury through protecting cerebral EC functions
Holistic analysis of lysine acetylation in aquaculture pathogenic bacteria Vibrio alginolyticus under bile salt stress
Lysine acetylation modification is a dynamic and reversible post-translational modification, which plays an important role in the metabolism and pathogenicity of pathogenic bacteria. Vibrio alginolyticus is a common pathogenic bacterium in aquaculture, and bile salt can trigger the expression of bacterial virulence. However, little is known about the function of lysine acetylation in V. alginolyticus under bile salt stress. In this study, 1,315 acetylated peptides on 689 proteins were identified in V. alginolyticus under bile salt stress by acetyl-lysine antibody enrichment and high-resolution mass spectrometry. Bioinformatics analysis found that the peptides motif ****A*Kac**** and *******Kac****A* were highly conserved, and protein lysine acetylation was involved in regulating various cellular biological processes and maintaining the normal life activities of bacteria, such as ribosome, aminoacyl-tRNA biosynthesis, fatty acid metabolism, two-component system, and bacterial secretion system. Further, 22 acetylated proteins were also found to be related to the virulence of V. alginolyticus under bile salt stress through secretion system, chemotaxis and motility, and adherence. Finally, comparing un-treated and treated with bile salt stress lysine acetylated proteins, it was found that there were 240 overlapping proteins, and found amino sugar and nucleotide sugar metabolism, beta-Lactam resistance, fatty acid degradation, carbon metabolism, and microbial metabolism in diverse environments pathways were significantly enriched in bile salt stress alone. In conclusion, this study is a holistic analysis of lysine acetylation in V. alginolyticus under bile salt stress, especially many virulence factors have also acetylated
Recommended from our members
Bradyrhizobium diazoefficiens USDA 110–glycine max interactome provides candidate proteins associated with symbiosis
Although the legume−rhizobium symbiosis is a most-important biological process, there is a limited knowledge about the protein interaction network between host and symbiont. Using interolog- and domain-based approaches, we constructed an interspecies protein interactome containing
5115 protein−protein interactions between 2291 Glycine max
and 290 Bradyrhizobium diazoefficiens USDA 110 proteins.
The interactome was further validated by the expression
pattern analysis in nodules, gene ontology term semantic
similarity, co-expression analysis, and luciferase complementation image assay. In the G. max−B. diazoefficiens
interactome, bacterial proteins are mainly ion channel and
transporters of carbohydrates and cations, while G. max
proteins are mainly involved in the processes of metabolism,
signal transduction, and transport. We also identified the top 10 highly interacting proteins (hubs) for each species. Kyoto Encyclopedia of Genes and Genomes pathway analysis for each hub showed that a pair of 14-3-3 proteins (SGF14g and SGF14k) and 5 heat shock proteins in G. max are possibly involved in symbiosis, and 10 hubs in
B. diazoefficiens may be important symbiotic effectors. Subnetwork analysis showed that 18 symbiosis-related soluble
N-ethylmaleimide sensitive factor attachment protein receptor proteins may play roles in regulating bacterial ion channels, and SGF14g and SGF14k possibly regulate the rhizobium dicarboxylate transport protein DctA. The predicted interactome provide a valuable basis for
understanding the molecular mechanism of nodulation in soybean
Compensatory Mechanisms Modulate the Neuronal Excitability in a Kainic Acid-Induced Epilepsy Mouse Model
Epilepsy is one of the most common neurological disorders affecting millions of people. Due to the complicated and unclear mechanisms of epilepsy, still a significant proportion of epilepsy patients remain poorly controlled. Epilepsy is characterized by convulsive seizures that are caused by increased excitability. In this study, by using kainic acid (KA)-induced epilepsy mice, we investigated the neuronal activities and revealed the neuronal compensatory mechanisms after KA-induced toxic hyperexcitability. The results indicate that both phasic inhibition induced by enhanced inhibitory synaptic activity and tonic inhibition mediated by activated astrocytes participate in the compensatory mechanisms. Compensatory mechanisms were already found in various neuronal disorders and were considered important in protecting nervous system from toxic hyperexcitability. This study hopefully will provide valuable clues in understanding the complex neuronal mechanisms of epilepsy, and exploring potential clinical treatment of the disease
Substantial transition to clean household energy mix in rural China
The household energy mix has significant impacts on human health and climate, as it contributes greatly to many health- and climate-relevant air pollutants. Compared to the well-established urban energy statistical system, the rural household energy statistical system is incomplete and is often associated with high biases. Via a nationwide investigation, this study revealed high contributions to energy supply from coal and biomass fuels in the rural household energy sector, while electricity comprised ∼20%. Stacking (the use of multiple sources of energy) is significant, and the average number of energy types was 2.8 per household. Compared to 2012, the consumption of biomass and coals in 2017 decreased by 45% and 12%, respectively, while the gas consumption amount increased by 204%. Increased gas and decreased coal consumptions were mainly in cooking, while decreased biomass was in both cooking (41%) and heating (59%). The time-sharing fraction of electricity and gases (E&G) for daily cooking grew, reaching 69% in 2017, but for space heating, traditional solid fuels were still dominant, with the national average shared fraction of E&G being only 20%. The non-uniform spatial distribution and the non-linear increase in the fraction of E&G indicated challenges to achieving universal access to modern cooking energy by 2030, particularly in less-developed rural and mountainous areas. In some non-typical heating zones, the increased share of E&G for heating was significant and largely driven by income growth, but in typical heating zones, the time-sharing fraction was <5% and was not significantly increased, except in areas with policy intervention. The intervention policy not only led to dramatic increases in the clean energy fraction for heating but also accelerated the clean cooking transition. Higher income, higher education, younger age, less energy/stove stacking and smaller family size positively impacted the clean energy transition
- …