10,085 research outputs found

    Effect of the sample geometry on the second magnetization peak in single crystalline Ba0.63_{0.63}K0.37_{0.37}BiO3_3 thick film

    Full text link
    Magnetization hysteresis loop M(H)M(H) measurements performed on a single crystalline Ba0.63_{0.63}K0.37_{0.37}BiO3_3 superconducting thick film reveal pronounced sample geometry dependence of the "second magnetization peak" (SMP), i.e. a maximum in the width of M(H)M(H) occurring at the field HSMP(T)H_{\rm SMP}(T). In particular, it is found that the SMP vanishes decreasing the film dimension. We argue that the observed sample geometry dependence of the SMP cannot be accounted for by models which assume a vortex pinning enhancement as the origin of the SMP. Our results can be understood considering the thermomagnetic instability effect and/or non-uniform current distribution at H<HSMPH < H_{\rm SMP} in large enough samples.Comment: 8 pages 3 figure

    Direct visualization of iron sheath shielding effect in MgB_2 superconducting wires

    Full text link
    Local magneto-optical imaging and global magnetization measurement techniques were used in order to visualize shielding effects in the superconducting core of MgB_2 wires sheathed by ferromagnetic iron (Fe). The magnetic shielding can provide a Meissner-like state in the superconducting core in applied magnetic fields up to ~1T. The maximum shielding fields are shown to correlate with the saturation fields of magnetization in Fe-sheaths. The shielding has been found to facilitate the appearance of an overcritical state, which is capable of achieving a critical current density (J_c) in the core which is larger than J_c in the same wire without the sheath by a factor of ~2. Other effects caused by the magnetic interaction between the sheath and the superconducting core are discussed.Comment: 4 pages, 3 figure

    Josephson scanning tunneling microscopy

    Full text link
    We propose a set of scanning tunneling microscopy experiments in which the surface of superconductor is scanned by a superconducting tip. Potential capabilities of such experimental setup are discussed. Most important anticipated results of such an experiment include the position-resolved measurement of the superconducting order parameter and the possibility to determine the nature of the secondary component of the order parameter at the surface. The theoretical description based on the tunneling Hamiltonian formalism is presented.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    Graph Distillation for Action Detection with Privileged Modalities

    Full text link
    We propose a technique that tackles action detection in multimodal videos under a realistic and challenging condition in which only limited training data and partially observed modalities are available. Common methods in transfer learning do not take advantage of the extra modalities potentially available in the source domain. On the other hand, previous work on multimodal learning only focuses on a single domain or task and does not handle the modality discrepancy between training and testing. In this work, we propose a method termed graph distillation that incorporates rich privileged information from a large-scale multimodal dataset in the source domain, and improves the learning in the target domain where training data and modalities are scarce. We evaluate our approach on action classification and detection tasks in multimodal videos, and show that our model outperforms the state-of-the-art by a large margin on the NTU RGB+D and PKU-MMD benchmarks. The code is released at http://alan.vision/eccv18_graph/.Comment: ECCV 201

    Classifying N-qubit Entanglement via Bell's Inequalities

    Get PDF
    All the states of N qubits can be classified into N-1 entanglement classes from 2-entangled to N-entangled (fully entangled) states. Each class of entangled states is characterized by an entanglement index that depends on the partition of N. The larger the entanglement index of an state, the more entangled or the less separable is the state in the sense that a larger maximal violation of Bell's inequality is attainable for this class of state.Comment: 4 pages, 3 figure

    Two regimes for effects of surface disorder on the zero-bias conductance peak of tunnel junctions involving d-wave superconductors

    Full text link
    Impurity-induced quasiparticle bound states on a pair-breaking surface of a d-wave superconductor are theoretically described, taking into account hybridization of impurity- and surface-induced Andreev states. Further a theory for effects of surface disorder (of thin impurity surface layer) on the low-bias conductance of tunnel junctions is developed. We find a threshold ncn_c for surface impurity concentration nSn_S, which separates the two regimes for surface impurity effects on the zero-bias conductance peak (ZBCP). Below the threshold, surface impurities do not broaden the ZBCP, but effectively reduce its weight and generate impurity bands. For low nSn_S impurity bands can be, in principle, resolved experimentally, being centered at energies of bound states induced by an isolated impurity on the surface. For larger nSn_S impurity bands are distorted, move to lower energies and, beginning with the threshold concentration nS=ncn_S=n_c, become centered at zero energy. With increasing nSn_S above the threshold, the ZBCP is quickly destroyed in the case of strong scatterers, while it is gradually suppressed and broaden in the presence of weak impurity potentials. More realistic cases, taking into account additional broadening, not related to the surface disorder, are also considered.Comment: 9 pages, 7 figure

    Electronic structure of d-wave superconducting quantum wires

    Full text link
    We present analytical and numerical results for the electronic spectra of wires of a d-wave superconductor on a square lattice. The spectra of Andreev and other quasiparticle states, as well as the spatial and particle-hole structures of their wave functions, depend on interference effects caused by the presence of the surfaces and are qualitatively different for half-filled wires with even or odd number of chains. For half-filled wires with an odd number of chains N at (110) orientation, spectra consist of N doubly degenerate branches. By contrast, for even N wires, these levels are split, and all quasiparticle states, even the ones lying above the maximal gap, have the characteristic properties of Andreev bound states. These Andreev states above the gap can be interpreted as a consequence of an infinite sequence of Andreev reflections experienced by quasiparticles along their trajectories bounded by the surfaces of the wire. Our microscopic results for the local density of states display atomic-scale Friedel oscillations due to the presence of the surfaces, which should be observable by scanning tunneling microscopy. For narrow wires the self-consistent treatment of the order parameter is found to play a crucial role. In particular, we find that for small wire widths the finite geometry may drive strong fluctuations or even stablilize exotic quasi-1D pair states with spin triplet character.Comment: 21 pages, 20 figures. Slightly modified version as published in PR

    Half-time image reconstruction in thermoacoustic tomography

    Get PDF
    Thermoacoustic tomography (TAT) is an emerging imaging technique with great potential for a wide range of biomedical imaging applications. We propose and investigate reconstruction approaches for TAT that are based on the half-time reflectivity tomography paradigm. We reveal that half-time reconstruction approaches permit for the explicit control of statistically complementary information that can result in the optimal reduction of image variances. We also show that half-time reconstruction approaches can mitigate image artifacts due to heterogeneous acoustic properties of an object. Reconstructed images and numerical results produced from simulated and experimental TAT measurement data are employed to demonstrate these effects

    Half-time-based reflectivity tomography and its application to thermoacoustic tomography

    Get PDF
    Thermoacoustic tomography (TAT) is an emerging imaging technique with great potential for a wide range of biomedical imaging applications. In this work, we propose and investigate reconstruction approaches for TAT that are based on the half-time reflectivity tomography paradigm. We demonstrate that half-time reconstruction approaches can produce images in TAT that possess better statistical properties than images produced by use of conventional reconstruction approaches
    corecore