27,962 research outputs found

    Vortex matter in superconductors

    Get PDF
    The behavior of the ensemble of vortices in the Shubnikov phase in biaxially oriented films of the high-temperature superconductor YBa2Cu3O7−δ(YBCO) in an applied magnetic field is investigated for different orientations of the field. The techniques used are the recording of the current–voltage characteristics in the transport current and of resonance curves and damping of a mechanical oscillator during the passage of a transport current. It is shown that the behavior of the vortex ensemble in YBCOfilms, unlike the case of single crystals, is determined by the interaction of the vortices with linear defects—edge dislocations, which are formed during the pseudomorphic epitaxialgrowth and are the dominant type of defect of the crystal lattice, with a density reaching 1015 lines/m2. The effective pinning of the vortices and the high critical current density (Jc⩾3×1010 A/m2 at 77 K) in YBCOfilms are due precisely to the high density of linear defects. New phase states of the vortex matter in YBCOfilms are found and are investigated in quasistatics and dynamics; they are due to the interaction of the vortices with crystal defects, to the onset of various types of disordering of the vortex lattice, and to the complex depinning process. A proposed H–T phase diagram of the vortex matter for YBCOfilms is proposed

    Exact asymptotic behavior of magnetic stripe domain arrays

    Get PDF
    The classical problem of magnetic stripe domain behavior in films and plates with uniaxial magnetic anisotropy is treated. Exact analytical results are derived for the stripe domain widths as function of applied perpendicular field, HH, in the regime where the domain period becomes large. The stripe period diverges as (Hc−H)−1/2(H_c-H)^{-1/2}, where HcH_c is the critical (infinite period) field, an exact result confirming a previous conjecture. The magnetization approaches saturation as (Hc−H)1/2(H_c-H)^{1/2}, a behavior which compares excellently with experimental data obtained for a 4μ4 \mum thick ferrite garnet film. The exact analytical solution provides a new basis for precise characterization of uniaxial magnetic films and plates, illustrated by a simple way to measure the domain wall energy. The mathematical approach is applicable for similar analysis of a wide class of systems with competing interactions where a stripe domain phase is formed.Comment: 4 pages, 4 figure

    Josephson scanning tunneling microscopy

    Full text link
    We propose a set of scanning tunneling microscopy experiments in which the surface of superconductor is scanned by a superconducting tip. Potential capabilities of such experimental setup are discussed. Most important anticipated results of such an experiment include the position-resolved measurement of the superconducting order parameter and the possibility to determine the nature of the secondary component of the order parameter at the surface. The theoretical description based on the tunneling Hamiltonian formalism is presented.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    Swift UVOT Grism Observations of Nearby Type Ia Supernovae - I. Observations and Data Reduction

    Get PDF
    Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) are useful tools for understanding progenitor systems and explosion physics. In particular, UV spectra of SNe Ia, which probe the outermost layers, are strongly affected by the progenitor metallicity. In this work, we present 120 Neil Gehrels Swift Observatory UV spectra of 39 nearby SNe Ia. This sample is the largest UV (lambda < 2900 A) spectroscopic sample of SNe Ia to date, doubling the number of UV spectra and tripling the number of SNe with UV spectra. The sample spans nearly the full range of SN Ia light-curve shapes (delta m(B) ~ 0.6-1.8 mag). The fast turnaround of Swift allows us to obtain UV spectra at very early times, with 13 out of 39 SNe having their first spectra observed >~ 1 week before peak brightness and the earliest epoch being 16.5 days before peak brightness. The slitless design of the Swift UV grism complicates the data reduction, which requires separating SN light from underlying host-galaxy light and occasional overlapping stellar light. We present a new data-reduction procedure to mitigate these issues, producing spectra that are significantly improved over those of standard methods. For a subset of the spectra we have nearly simultaneous Hubble Space Telescope UV spectra; the Swift spectra are consistent with these comparison data.Comment: Accepted for publication in MNRA

    Direct visualization of iron sheath shielding effect in MgB_2 superconducting wires

    Full text link
    Local magneto-optical imaging and global magnetization measurement techniques were used in order to visualize shielding effects in the superconducting core of MgB_2 wires sheathed by ferromagnetic iron (Fe). The magnetic shielding can provide a Meissner-like state in the superconducting core in applied magnetic fields up to ~1T. The maximum shielding fields are shown to correlate with the saturation fields of magnetization in Fe-sheaths. The shielding has been found to facilitate the appearance of an overcritical state, which is capable of achieving a critical current density (J_c) in the core which is larger than J_c in the same wire without the sheath by a factor of ~2. Other effects caused by the magnetic interaction between the sheath and the superconducting core are discussed.Comment: 4 pages, 3 figure

    The origin of paramagnetic magnetization in field-cooled YBa2Cu3O7 films

    Full text link
    Temperature dependences of the magnetic moment have been measured in YBa_2Cu_3O_{7-\delta} thin films over a wide magnetic field range (5 <= H <= 10^4 Oe). In these films a paramagnetic signal known as the paramagnetic Meissner effect has been observed. The experimental data in the films, which have strong pinning and high critical current densities (J_c ~ 2 \times 10^6 A/cm^2 at 77 K), are quantitatively shown to be highly consistent with the theoretical model proposed by Koshelev and Larkin [Phys. Rev. B 52, 13559 (1995)]. This finding indicates that the origin of the paramagnetic effect is ultimately associated with nucleation and inhomogeneous spatial redistribution of magnetic vortices in a sample which is cooled down in a magnetic field. It is also shown that the distribution of vortices is extremely sensitive to the interplay of film properties and the real experimental conditions of the measurements.Comment: RevTex, 8 figure

    The Bean-Livingston barrier at a superconductor/magnet interface

    Full text link
    The Bean-Livingston barrier at the interface of type-II superconductor/soft-magnet heterostructures is studied on the basis of the classical London approach. This shows a characteristic dependence on the geometry of the particular structure and its interface as well as on the relative permeability of the involved magnetic constituent. The modification of the barrier by the presence of the magnet can be significant, as demonstrated for a cylindrical superconducting filament covered with a coaxial magnetic sheath. Using typical values of the relative permeability, the critical field of first penetration of magnetic flux is predicted to be strongly enhanced, whereas the variation of the average critical current density with the external field is strongly depressed, in accord with the observations of recent experiments.Comment: RevTeX 4; revised version; accepted in Journal of Physics: Condensed Matte

    Effect of the sample geometry on the second magnetization peak in single crystalline Ba0.63_{0.63}K0.37_{0.37}BiO3_3 thick film

    Full text link
    Magnetization hysteresis loop M(H)M(H) measurements performed on a single crystalline Ba0.63_{0.63}K0.37_{0.37}BiO3_3 superconducting thick film reveal pronounced sample geometry dependence of the "second magnetization peak" (SMP), i.e. a maximum in the width of M(H)M(H) occurring at the field HSMP(T)H_{\rm SMP}(T). In particular, it is found that the SMP vanishes decreasing the film dimension. We argue that the observed sample geometry dependence of the SMP cannot be accounted for by models which assume a vortex pinning enhancement as the origin of the SMP. Our results can be understood considering the thermomagnetic instability effect and/or non-uniform current distribution at H<HSMPH < H_{\rm SMP} in large enough samples.Comment: 8 pages 3 figure

    Piezoelectric mechanism of orientation of stripe structures in two-dimensional electron systems

    Full text link
    A piezoelectric mechanism of orientation of stripes in two-dimensional quantum Hall systems in GaAs heterostructures is considered. The anisotropy of the elastic moduli and the boundary of the sample are taken into account. It is found that in the average the stripes line up with the [110] axis. In double layer systems the wave vector of the stripe structure rotates from the [110] to [100] axis if the period of density modulation becomes large than the interlayer distance. From the experimental point of view it means that in double layer systems anisotropic part of resistivity changes its sign under variation of the external magnetic field.Comment: 8 page
    • …
    corecore