322 research outputs found

    Diabetic Aldehyde Dehydrogenase 2 Mutant (ALDH2*2) Mice Are More Susceptible to Cardiac Ischemic-Reperfusion Injury Due to 4-Hydroxy-2-Nonenal Induced Coronary Endothelial Cell Damage

    Get PDF
    Background: Aldehyde dehydrogenase-2 (ALDH2), a mitochondrial enzyme, detoxifies reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE). A highly prevalent E487K mutation in ALDH2 (ALDH2*2) in East Asian people with intrinsic low ALDH2 activity is implicated in diabetic complications. 4HNE-induced cardiomyocyte dysfunction was studied in diabetic cardiac damage; however, coronary endothelial cell (CEC) injury in myocardial ischemia-reperfusion injury (IRI) in diabetic mice has not been studied. Therefore, we hypothesize that the lack of ALDH2 activity exacerbates 4HNE-induced CEC dysfunction which leads to cardiac damage in ALDH2*2 mutant diabetic mice subjected to myocardial IRI. Methods and Results: Three weeks after diabetes mellitus (DM) induction, hearts were subjected to IRI either in vivo via left anterior descending artery occlusion and release or ex vivo IRI by using the Langendorff system. The cardiac performance was assessed by conscious echocardiography in mice or by inserting a balloon catheter in the left ventricle in the ex vivo model. Just 3 weeks of DM led to an increase in cardiac 4HNE protein adducts and, cardiac dysfunction, and a decrease in the number of CECs along with reduced myocardial ALDH2 activity in ALDH2*2 mutant diabetic mice compared with their wild-type counterparts. Systemic pretreatment with Alda-1 (10 mg/kg per day), an activator of both ALDH2 and ALDH2*2, led to a reduction in myocardial infarct size and dysfunction, and coronary perfusion pressure upon cardiac IRI by increasing CEC population and coronary arteriole opening. Conclusions: Low ALDH2 activity exacerbates 4HNE-mediated CEC injury and thereby cardiac dysfunction in diabetic mouse hearts subjected to IRI, which can be reversed by ALDH2 activation

    Unsupervised Texture Segmentation Using Active Contour Model and Oscillating Information

    Get PDF
    Textures often occur in real-world images and may cause considerable difficulties in image segmentation. In order to segment texture images, we propose a new segmentation model that combines image decomposition model and active contour model. The former model is capable of decomposing structural and oscillating components separately from texture image, and the latter model can be used to provide smooth segmentation contour. In detail, we just replace the data term of piecewise constant/smooth approximation in CCV (convex Chan-Vese) model with that of image decomposition model-VO (Vese-Osher). Therefore, our proposed model can estimate both structural and oscillating components of texture images as well as segment textures simultaneously. In addition, we design fast Split-Bregman algorithm for our proposed model. Finally, the performance of our method is demonstrated by segmenting some synthetic and real texture images

    Type-2 diabetic aldehyde dehydrogenase 2 mutant mice (ALDH 2*2) exhibiting heart failure with preserved ejection fraction phenotype can be determined by exercise stress echocardiography

    Get PDF
    E487K point mutation of aldehyde dehydrogenase (ALDH) 2 (ALDH2*2) in East Asians intrinsically lowers ALDH2 activity. ALDH2*2 is associated with diabetic cardiomyopathy. Diabetic patients exhibit heart failure of preserved ejection fraction (HFpEF) i.e. while the systolic heart function is preserved in them, they may exhibit diastolic dysfunction, implying a jeopardized myocardial health. Currently, it is challenging to detect cardiac functional deterioration in diabetic mice. Stress echocardiography (echo) in the clinical set-up is a procedure used to measure cardiac reserve and impaired cardiac function in coronary artery diseases. Therefore, we hypothesized that high-fat diet fed type-2 diabetic ALDH2*2 mutant mice exhibit HFpEF which can be measured by cardiac echo stress test methodology. We induced type-2 diabetes in 12-week-old male C57BL/6 and ALDH2*2 mice through a high-fat diet. At the end of 4 months of DM induction, we measured the cardiac function in diabetic and control mice of C57BL/6 and ALDH2*2 genotypes by conscious echo. Subsequently, we imposed exercise stress by allowing the mice to run on the treadmill until exhaustion. Post-stress, we measured their cardiac function again. Only after treadmill running, but not at rest, we found a significant decrease in % fractional shortening and % ejection fraction in ALDH2*2 mice with diabetes compared to C57BL/6 diabetic mice as well as non-diabetic (control) ALDH2*2 mice. The diabetic ALDH2*2 mice also exhibited poor maximal running speed and distance. Our data suggest that high-fat fed diabetic ALDH2*2 mice exhibit HFpEF and treadmill exercise stress echo test is able to determine this HFpEF in the diabetic ALDH2*2 mice

    Active Contour Model Coupling with Higher Order Diffusion for Medical Image Segmentation

    Get PDF
    Active contour models are very popular in image segmentation. Different features such as mean gray and variance are selected for different purpose. But for image with intensity inhomogeneities, there are no features for segmentation using the active contour model. The images with intensity inhomogeneities often occurred in real world especially in medical images. To deal with the difficulties raised in image segmentation with intensity inhomogeneities, a new active contour model with higher-order diffusion method is proposed. With the addition of gradient and Laplace information, the active contour model can converge to the edge of the image even with the intensity inhomogeneities. Because of the introduction of Laplace information, the difference scheme becomes more difficult. To enhance the efficiency of the segmentation, the fast Split Bregman algorithm is designed for the segmentation implementation. The performance of our method is demonstrated through numerical experiments of some medical image segmentations with intensity inhomogeneities

    Exposure to the Dioxin-like Pollutant PCB 126 Afflicts Coronary Endothelial Cells via Increasing 4-Hydroxy-2 Nonenal: A Role for Aldehyde Dehydrogenase 2

    Get PDF
    Exposure to environmental pollutants, including dioxin-like polychlorinated biphenyls (PCBs), play an important role in vascular inflammation and cardiometabolic diseases (CMDs) by inducing oxidative stress. Earlier, we demonstrated that oxidative stress-mediated lipid peroxidation derived 4-hydroxy-2-nonenal (4HNE) contributes to CMDs by decreasing the angiogenesis of coronary endothelial cells (CECs). By detoxifying 4HNE, aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme, enhances CEC angiogenesis. Therefore, we hypothesize that ALDH2 activation attenuates a PCB 126-mediated 4HNE-induced decrease in CEC angiogenesis. To test our hypothesis, we treated cultured mouse CECs with 4.4 µM PCB 126 and performed spheroid and aortic ring sprouting assays, the ALDH2 activity assay, and Western blotting for the 4HNE adduct levels and real-time qPCR to determine the expression levels of Cyp1b1 and oxidative stress-related genes. PCB 126 increased the gene expression and 4HNE adduct levels, whereas it decreased the ALDH2 activity and angiogenesis significantly in MCECs. However, pretreatment with 2.5 µM disulfiram (DSF), an ALDH2 inhibitor, or 10 µM Alda 1, an ALDH2 activator, before the PCB 126 challenge exacerbated and rescued the PCB 126-mediated decrease in coronary angiogenesis by modulating the 4HNE adduct levels respectively. Finally, we conclude that ALDH2 can be a therapeutic target to alleviate environmental pollutant-induced CMDs
    • …
    corecore