10,144 research outputs found

    Solution space structure of random constraint satisfaction problems with growing domains

    Full text link
    In this paper we study the solution space structure of model RB, a standard prototype of Constraint Satisfaction Problem (CSPs) with growing domains. Using rigorous the first and the second moment method, we show that in the solvable phase close to the satisfiability transition, solutions are clustered into exponential number of well-separated clusters, with each cluster contains sub-exponential number of solutions. As a consequence, the system has a clustering (dynamical) transition but no condensation transition. This picture of phase diagram is different from other classic random CSPs with fixed domain size, such as random K-Satisfiability (K-SAT) and graph coloring problems, where condensation transition exists and is distinct from satisfiability transition. Our result verifies the non-rigorous results obtained using cavity method from spin glass theory, and sheds light on the structures of solution spaces of problems with a large number of states.Comment: 8 pages, 1 figure

    Coupled-wire construction of static and Floquet second-order topological insulators

    Full text link
    Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes. The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system. Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed following our approach in experiments by measuring the mean chiral displacements of wavepackets.Comment: 14 pages, 9 figures. Published versio

    A generalized likelihood-weighted optimal sampling algorithm for rare-event probability quantification

    Full text link
    In this work, we introduce a new acquisition function for sequential sampling to efficiently quantify rare-event statistics of an input-to-response (ItR) system with given input probability and expensive function evaluations. Our acquisition is a generalization of the likelihood-weighted (LW) acquisition that was initially designed for the same purpose and then extended to many other applications. The improvement in our acquisition comes from the generalized form with two additional parameters, by varying which one can target and address two weaknesses of the original LW acquisition: (1) that the input space associated with rare-event responses is not sufficiently stressed in sampling; (2) that the surrogate model (generated from samples) may have significant deviation from the true ItR function, especially for cases with complex ItR function and limited number of samples. In addition, we develop a critical procedure in Monte-Carlo discrete optimization of the acquisition function, which achieves orders of magnitude acceleration compared to existing approaches for such type of problems. The superior performance of our new acquisition to the original LW acquisition is demonstrated in a number of test cases, including some cases that were designed to show the effectiveness of the original LW acquisition. We finally apply our method to an engineering example to quantify the rare-event roll-motion statistics of a ship in a random sea
    corecore