38 research outputs found

    Multi-User Matching and Resource Allocation in Vision Aided Communications

    Full text link
    Visual perception is an effective way to obtain the spatial characteristics of wireless channels and to reduce the overhead for communications system. A critical problem for the visual assistance is that the communications system needs to match the radio signal with the visual information of the corresponding user, i.e., to identify the visual user that corresponds to the target radio signal from all the environmental objects. In this paper, we propose a user matching method for environment with a variable number of objects. Specifically, we apply 3D detection to extract all the environmental objects from the images taken by multiple cameras. Then, we design a deep neural network (DNN) to estimate the location distribution of users by the images and beam pairs at multiple moments, and thereby identify the users from all the extracted environmental objects. Moreover, we present a resource allocation method based on the taken images to reduce the time and spectrum overhead compared to traditional resource allocation methods. Simulation results show that the proposed user matching method outperforms the existing methods, and the proposed resource allocation method can achieve 92%92\% transmission rate of the traditional resource allocation method but with the time and spectrum overhead significantly reduced.Comment: 34 pages, 21 figure

    Uncertainty Modulates the Effect of Transcranial Stimulation Over the Right Dorsolateral Prefrontal Cortex on Decision-Making Under Threat

    Get PDF
    Threat is a strategy that can be used to impact decision-making processes in bargaining. Abundant evidence suggests that credible threat and incredible threat both influence the obeisance of others. However, it is not clear whether the decision-making processes under credible threat and incredible threat during bargaining involve differential neurocognitive mechanisms. Here, we employed cathodal transcranial direct current stimulation (tDCS) to deactivate the right dorsolateral prefrontal cortex (rDLPFC) to address this question while subjects allocated and reported the subjective probability of future rejection under incredible threat and credible threat. We found that application of cathodal tDCS over the rDLPFC decreased the proposer’s subjective inference of probability of rejection and the offer to the responder under incredible threat. Conversely, the same stimulation did not lead to a significant difference compared to the sham group in subjective probability and offer under credible threat. These results suggested that decision-making processes under the two types of threat during bargaining were associated with different neurocognitive substrates, because the punishment for non-compliance was uncertain under incredible threat, whereas it was certain under credible threat. We decreased activity in the rDLPFC, which is involved in decision-making processes related to bargaining under incredible threats, and observed significantly impacted behavior. The differential neurocognitive bases of subjective probability of rejection under incredible threat and credible threat resulted in different tDCS effects

    Multi-Camera View Based Proactive BS Selection and Beam Switching for V2X

    Full text link
    Due to the short wavelength and large attenuation of millimeter-wave (mmWave), mmWave BSs are densely distributed and require beamforming with high directivity. When the user moves out of the coverage of the current BS or is severely blocked, the mmWave BS must be switched to ensure the communication quality. In this paper, we proposed a multi-camera view based proactive BS selection and beam switching that can predict the optimal BS of the user in the future frame and switch the corresponding beam pair. Specifically, we extract the features of multi-camera view images and a small part of channel state information (CSI) in historical frames, and dynamically adjust the weight of each modality feature. Then we design a multi-task learning module to guide the network to better understand the main task, thereby enhancing the accuracy and the robustness of BS selection and beam switching. Using the outputs of all tasks, a prior knowledge based fine tuning network is designed to further increase the BS switching accuracy. After the optimal BS is obtained, a beam pair switching network is proposed to directly predict the optimal beam pair of the corresponding BS. Simulation results in an outdoor intersection environment show the superior performance of our proposed solution under several metrics such as predicting accuracy, achievable rate, harmonic mean of precision and recall

    Vision Aided Environment Semantics Extraction and Its Application in mmWave Beam Selection

    Full text link
    In this letter, we propose a novel mmWave beam selection method based on the environment semantics that are extracted from camera images taken at the user side. Specifically, we first define the environment semantics as the spatial distribution of the scatterers that affect the wireless propagation channels and utilize the keypoint detection technique to extract them from the input images. Then, we design a deep neural network with environment semantics as the input that can output the optimal beam pairs at UE and BS. Compared with the existing beam selection approaches that directly use images as the input, the proposed semantic-based method can explicitly obtain the environmental features that account for the propagation of wireless signals, and thus reduce the burden of storage and computation. Simulation results show that the proposed method can precisely estimate the location of the scatterers and outperform the existing image or LIDAR based works

    5G PRS-Based Sensing: A Sensing Reference Signal Approach for Joint Sensing and Communication System

    Full text link
    The emerging joint sensing and communication (JSC) technology is expected to support new applications and services, such as autonomous driving and extended reality (XR), in the future wireless communication systems. Pilot (or reference) signals in wireless communications usually have good passive detection performance, strong anti-noise capability and good auto-correlation characteristics, hence they bear the potential for applying in radar sensing. In this paper, we investigate how to apply the positioning reference signal (PRS) of the 5th generation (5G) mobile communications in radar sensing. This approach has the unique benefit of compatibility with the most advanced mobile communication system available so far. Thus, the PRS can be regarded as a sensing reference signal to simultaneously realize the functions of radar sensing, communication and positioning in a convenient manner. Firstly, we propose a PRS based radar sensing scheme and analyze its range and velocity estimation performance, based on which we propose a method that improves the accuracy of velocity estimation by using multiple frames. Furthermore, the Cramer-Rao lower bound (CRLB) of the range and velocity estimation for PRS based radar sensing and the CRLB of the range estimation for PRS based positioning are derived. Our analysis and simulation results demonstrate the feasibility and superiority of PRS over other pilot signals in radar sensing. Finally, some suggestions for the future 5G-Advanced and 6th generation (6G) frame structure design containing the sensing reference signal are derived based on our study

    Images of Arc-Heated Supersonic Argon Plasma Jet Impinging on a Flat Plate

    Full text link

    Quantum Computing for MIMO Beam Selection Problem: Model and Optical Experimental Solution

    Full text link
    Massive multiple-input multiple-output (MIMO) has gained widespread popularity in recent years due to its ability to increase data rates, improve signal quality, and provide better coverage in challenging environments. In this paper, we investigate the MIMO beam selection (MBS) problem, which is proven to be NP-hard and computationally intractable. To deal with this problem, quantum computing that can provide faster and more efficient solutions to large-scale combinatorial optimization is considered. MBS is formulated in a quadratic unbounded binary optimization form and solved with Coherent Ising Machine (CIM) physical machine. We compare the performance of our solution with two classic heuristics, simulated annealing and Tabu search. The results demonstrate an average performance improvement by a factor of 261.23 and 20.6, respectively, which shows that CIM-based solution performs significantly better in terms of selecting the optimal subset of beams. This work shows great promise for practical 5G operation and promotes the application of quantum computing in solving computationally hard problems in communication.Comment: Accepted by IEEE Globecom 202

    Neural Dynamics of Processing Probability Weight and Monetary Magnitude in the Evaluation of a Risky Reward

    Get PDF
    Risky decision-making involves risky reward valuation, choice, and feedback processes. However, the temporal dynamics of risky reward processing are not well understood. Using event-related brain potential, we investigated the neural correlates of probability weight and money magnitude in the evaluation of a risky reward. In this study, each risky choice consisted of two risky options, which were presented serially to separate decision-making and option evaluation processes. The early P200 component reflected the process of probability weight, not money magnitude. The medial frontal negativity (MFN) reflected both probability weight and money magnitude processes. The late positive potential (LPP) only reflected the process of probability weight. These results demonstrate distinct temporal dynamics for probability weight and money magnitude processes when evaluating a risky outcome, providing a better understanding of the possible mechanism underlying risky reward processing
    corecore