1,011 research outputs found

    The Labusch Parameter of a Driven Flux Line Lattice in YBa2_2Cu3_3O7_7 Superconducting Films

    Full text link
    We have investigated the influence of a driving force on the elastic coupling (Labusch parameter) of the field-cooled state of the flux line lattice (FLL) in 400 nm thick YBa2_2Cu3_3O7_7 superconducting films. We found that the FLL of a field-cooled state without driving forces is not in an equilibrium state. Results obtained for magnetic fields applied at 0∘0^\circ and 30∘^\circ relative to CuO2_2 planes, show an enhancement of the elastic coupling of the films at driving current densities several orders of magnitude smaller than the critical one. Our results indicate that the FLL appears to be in a relatively ordered, metastable state after field cooling without driving forces.Comment: 4 Figure

    Drastic improvement of surface structure and current-carrying ability in YBa2Cu3O7 films by introducing multilayered structure

    Full text link
    Much smoother surfaces and significantly improved superconducting properties of relatively thick YBa2Cu3O7 (YBCO) films have been achieved by introducing a multilayered structure with alternating main YBCO and additional NdBCO layers. The surface of thick (1 microm) multilayers has almost no holes compared to YBCO films. Critical current density (Jc) have been drastically increased up to a factor > 3 in 1 microm multilayered structures compared to YBCO films over entire temperature and applied magnetic filed range. Moreover, Jc values measured in thick multilayers are even larger than in much thinner YBCO films. The Jc and surface improvement have been analysed and attributed to growth conditions and corresponding structural peculiarities.Comment: Accepted to Appl. Phys. Lett. 88, June (2006), in press 4 pages, 3 figure

    Overcritical state in superconducting round wires sheathed by iron

    Get PDF
    Magnetic measurements carried out on MgB_2 superconducting round wires have shown that the critical current density J_c(B_a) in wires sheathed by iron can be significantly higher than that in the same bare (unsheathed) wires over a wide applied magnetic field B_a range. The magnetic behavior is, however, strongly dependent on the magnetic history of the sheathed wires, as well as on the wire orientation with respect to the direction of the applied field. The behavior observed can be explained by magnetic interaction between the soft magnetic sheath and superconducting core, which can result in a redistribution of supercurrents in the flux filled superconductor. A phenomenological model explaining the observed behavior is proposed.Comment: 9 pages, 7 figure

    Vortex matter in superconductors

    Get PDF
    The behavior of the ensemble of vortices in the Shubnikov phase in biaxially oriented films of the high-temperature superconductor YBa2Cu3O7−δ(YBCO) in an applied magnetic field is investigated for different orientations of the field. The techniques used are the recording of the current–voltage characteristics in the transport current and of resonance curves and damping of a mechanical oscillator during the passage of a transport current. It is shown that the behavior of the vortex ensemble in YBCOfilms, unlike the case of single crystals, is determined by the interaction of the vortices with linear defects—edge dislocations, which are formed during the pseudomorphic epitaxialgrowth and are the dominant type of defect of the crystal lattice, with a density reaching 1015 lines/m2. The effective pinning of the vortices and the high critical current density (Jc⩾3×1010 A/m2 at 77 K) in YBCOfilms are due precisely to the high density of linear defects. New phase states of the vortex matter in YBCOfilms are found and are investigated in quasistatics and dynamics; they are due to the interaction of the vortices with crystal defects, to the onset of various types of disordering of the vortex lattice, and to the complex depinning process. A proposed H–T phase diagram of the vortex matter for YBCOfilms is proposed

    Exact asymptotic behavior of magnetic stripe domain arrays

    Get PDF
    The classical problem of magnetic stripe domain behavior in films and plates with uniaxial magnetic anisotropy is treated. Exact analytical results are derived for the stripe domain widths as function of applied perpendicular field, HH, in the regime where the domain period becomes large. The stripe period diverges as (Hc−H)−1/2(H_c-H)^{-1/2}, where HcH_c is the critical (infinite period) field, an exact result confirming a previous conjecture. The magnetization approaches saturation as (Hc−H)1/2(H_c-H)^{1/2}, a behavior which compares excellently with experimental data obtained for a 4μ4 \mum thick ferrite garnet film. The exact analytical solution provides a new basis for precise characterization of uniaxial magnetic films and plates, illustrated by a simple way to measure the domain wall energy. The mathematical approach is applicable for similar analysis of a wide class of systems with competing interactions where a stripe domain phase is formed.Comment: 4 pages, 4 figure

    Comparison of small-field behavior in MgB2, Low- and high-temperature superconductors

    Get PDF
    Different types of superconductors have been investigated at small magnetic fields (Ba) over wide temperature (T) ranges at different Ba orientations. It has been shown that the temperature dependence of the characteristic field (B*), separating the Ba-independent critical current density (Jc) plateau (single vortex pinning regime) and the region with Jc(Ba) (collective pinning), can be attributed either to the temperature dependence of the magnetic penetration depth for Nb-film and MgB2 bulk superconductors, or to thermally activated processes for Bi-based superconductors and YBa2Cu3O7−8 superconducting films. In both cases the vortex pinning influence appears to have a secondary role, affecting the effective vortex depinning radius. An exception in such B*(T) behavior is considered for Nb film when the magnetic field has its considerable component applied perpendicular to the main surface of the film

    Drastic improvement of surface structure and current-carrying ability in YBa2Cu3O7 films by introducing multilayered structure

    Get PDF
    Much smoother surfaces and significantly improved superconducting properties of relatively thick YBa2Cu3O7 (YBCO) films have been achieved by introducing a multilayered structure with alternating main YBCO and additional NdBCO layers. The surface of thick (1 µm) multilayers has almost no holes compared to YBCO films. Critical current density (Jc) has been drastically increased up to a factor \u3e3 in 1 µm multilayered structures compared to YBCO films over entire temperature and applied magnetic field range. Moreover, Jc values measured in thick multilayers are even larger than in much thinner YBCO films. The Jc and surface improvement have been analyzed and attributed to growth conditions and corresponding structural peculiarities

    Selection strategy and the design of hybrid oligonucleotide primers for RACE-PCR: cloning a family of toxin-like sequences from Agelena orientalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>the use of specific but partially degenerate primers for nucleic acid hybridisations and PCRs amplification of known or unknown gene families was first reported well over a decade ago and the technique has been used widely since then.</p> <p>Results</p> <p>here we report a novel and successful selection strategy for the design of hybrid partially degenerate primers for use with RT-PCR and RACE-PCR for the identification of unknown gene families. The technique (named PaBaLiS) has proven very effective as it allowed us to identify and clone a large group of mRNAs encoding neurotoxin-like polypeptide pools from the venom of <it>Agelena orientalis </it>species of spider. Our approach differs radically from the generally accepted CODEHOP principle first reported in 1998. Most importantly, our method has proven very efficient by performing better than an independently generated high throughput EST cloning programme. Our method yielded nearly 130 non-identical sequences from <it>Agelena orientalis</it>, whilst the EST cloning technique yielded only 48 non-identical sequences from 2100 clones obtained from the same <it>Agelena </it>material. In addition to the primer design approach reported here, which is almost universally applicable to any PCR cloning application, our results also indicate that venom of <it>Agelena orientalis </it>spider contains a much larger family of related toxin-like sequences than previously thought.</p> <p>Conclusion</p> <p>with upwards of 100,000 species of spider thought to exist, and a propensity for producing diverse peptide pools, many more peptides of pharmacological importance await discovery. We envisage that some of these peptides and their recombinant derivatives will provide a new range of tools for neuroscience research and could also facilitate the development of a new generation of analgesic drugs and insecticides.</p

    Virgin magnetization of a magnetically shielded superconductor wire: Theory and experiment

    Get PDF
    On the basis of exact solutions to the London equation, the magnetic moment of a type II superconductor filament surrounded by a soft-magnet environment is calculated and the procedure of extracting the superconductor contribution from magnetic measurements is suggested. A comparison of theoretical results with experiments on MgB2/Fe wires allows the estimation of the value of critical current for the first magnetic flux penetration
    • …
    corecore