3,819 research outputs found
The Changing Face of Milk Production, Milk Quality and Milking Technology in Brazil
This introductory paper gives an overview of milk production in Brazil and discusses a series of recent regulations implemented to improve milk quality with the purpose of asserting the Brazilian dairy industry as a competitor on the international market. It also points out the economic advantage of setting design guidelines for milking machines that would be best suited to Brazilian crossbred cows.Brazilian Milk Quality, Brazil Dairy Industry, Brazilian Milk Production, Brazilian Milk Prices, Agribusiness, Farm Management, Food Consumption/Nutrition/Food Safety, Industrial Organization, International Development, Political Economy,
Recommended from our members
Predicting Empathy From Resting State Brain Connectivity: A Multivariate Approach.
Recent task fMRI studies suggest that individual differences in trait empathy and empathic concern are mediated by patterns of connectivity between self-other resonance and top-down control networks that are stable across task demands. An untested implication of this hypothesis is that these stable patterns of connectivity should be visible even in the absence of empathy tasks. Using machine learning, we demonstrate that patterns of resting state fMRI connectivity (i.e. the degree of synchronous BOLD activity across multiple cortical areas in the absence of explicit task demands) of resonance and control networks predict trait empathic concern (n = 58). Empathic concern was also predicted by connectivity patterns within the somatomotor network. These findings further support the role of resonance-control network interactions and of somatomotor function in our vicariously driven concern for others. Furthermore, a practical implication of these results is that it is possible to assess empathic predispositions in individuals without needing to perform conventional empathy assessments
Decoding the Encoding of Functional Brain Networks: an fMRI Classification Comparison of Non-negative Matrix Factorization (NMF), Independent Component Analysis (ICA), and Sparse Coding Algorithms
Brain networks in fMRI are typically identified using spatial independent
component analysis (ICA), yet mathematical constraints such as sparse coding
and positivity both provide alternate biologically-plausible frameworks for
generating brain networks. Non-negative Matrix Factorization (NMF) would
suppress negative BOLD signal by enforcing positivity. Spatial sparse coding
algorithms ( Regularized Learning and K-SVD) would impose local
specialization and a discouragement of multitasking, where the total observed
activity in a single voxel originates from a restricted number of possible
brain networks.
The assumptions of independence, positivity, and sparsity to encode
task-related brain networks are compared; the resulting brain networks for
different constraints are used as basis functions to encode the observed
functional activity at a given time point. These encodings are decoded using
machine learning to compare both the algorithms and their assumptions, using
the time series weights to predict whether a subject is viewing a video,
listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects.
For classifying cognitive activity, the sparse coding algorithm of
Regularized Learning consistently outperformed 4 variations of ICA across
different numbers of networks and noise levels (p0.001). The NMF algorithms,
which suppressed negative BOLD signal, had the poorest accuracy. Within each
algorithm, encodings using sparser spatial networks (containing more
zero-valued voxels) had higher classification accuracy (p0.001). The success
of sparse coding algorithms may suggest that algorithms which enforce sparse
coding, discourage multitasking, and promote local specialization may capture
better the underlying source processes than those which allow inexhaustible
local processes such as ICA
- …