85 research outputs found
A valley-spin qubit in a carbon nanotube
Although electron spins in III-V semiconductor quantum dots have shown great
promise as qubits, a major challenge is the unavoidable hyperfine decoherence
in these materials. In group IV semiconductors, the dominant nuclear species
are spinless, allowing for qubit coherence times that have been extended up to
seconds in diamond and silicon. Carbon nanotubes are a particularly attractive
host material, because the spin-orbit interaction with the valley degree of
freedom allows for electrical manipulation of the qubit. In this work, we
realise such a qubit in a nanotube double quantum dot. The qubit is encoded in
two valley-spin states, with coherent manipulation via electrically driven spin
resonance (EDSR) mediated by a bend in the nanotube. Readout is performed by
measuring the current in Pauli blockade. Arbitrary qubit rotations are
demonstrated, and the coherence time is measured via Hahn echo. Although the
measured decoherence time is only 65 ns in our current device, this work offers
the possibility of creating a qubit for which hyperfine interaction can be
virtually eliminated
Trastuzumab emtansine: mechanisms of action and drug resistance
Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate that is effective and generally well tolerated when administered as a single agent to treat advanced breast cancer. Efficacy has now been demonstrated in randomized trials as first line, second line, and later than the second line treatment of advanced breast cancer. T-DM1 is currently being evaluated as adjuvant treatment for early breast cancer. It has several mechanisms of action consisting of the anti-tumor effects of trastuzumab and those of DM1, a cytotoxic anti-microtubule agent released within the target cells upon degradation of the human epidermal growth factor receptor-2 (HER2)-T-DM1 complex in lysosomes. The cytotoxic effect of T-DM1 likely varies depending on the intracellular concentration of DM1 accumulated in cancer cells, high intracellular levels resulting in rapid apoptosis, somewhat lower levels in impaired cellular trafficking and mitotic catastrophe, while the lowest levels lead to poor response to T-DM1. Primary resistance of HER2-positive metastatic breast cancer to T-DM1 appears to be relatively infrequent, but most patients treated with T-DM1 develop acquired drug resistance. The mechanisms of resistance are incompletely understood, but mechanisms limiting the binding of trastuzumab to cancer cells may be involved. The cytotoxic effect of T-DM1 may be impaired by inefficient internalization or enhanced recycling of the HER2-T-DM1 complex in cancer cells, or impaired lysosomal degradation of trastuzumab or intracellular trafficking of HER2. The effect of T-DM1 may also be compromised by multidrug resistance proteins that pump DM1 out of cancer cells. In this review we discuss the mechanism of action of T-DM1 and the key clinical results obtained with it, the combinations of T-DM1 with other cytotoxic agents and anti-HER drugs, and the potential resistance mechanisms and the strategies to overcome resistance to T-DM1.BioMed Central open acces
Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan
Background: Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR) MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. Methods: CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression) or MCF7 cells (± transfection with the CD44 gene) were treated with the CD44 ligand, hyaluronon (HA), or heregulin and their in vitro growth (MTT), migration (Boyden chamber and wound healing) and invasion (Matrigel transwell migration) determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. Results: TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2 and EGFR and induction of cell migration. Overexpression of CD44 in MCF7 cells, which lack endogenous CD44, generated an HA-sensitive phenotype, with HA-stimulation promoting erbB/EGFR activation and migration. Conclusions: These data suggest an important role for CD44 in the context of tamoxifen-resistance where it may augment cellular response to erbB ligands and HA, factors that are reported to be present within the tumour microenvironment in vivo. Thus CD44 may present an important determinant of breast cancer progression in the setting of endocrine resistance
Chiral chemistry of single molecules.
If a single chiral molecule stands alone in a chemical system
(sample) it provides necessarily 100 percent e.e. (enantiomeric
excess). This rule is an axiom of stereochemistry, which has
not been studied earlier. The present paper discusses conditions
when a single chiral molecule can appear in a chemical
sample and analyses consequences of such situations. One
of the most important consequences is, that the origin of
biological chirality can be traced back to such systems in
combination with asymmetric autocatalysis
Single-molecule chirality
If a chiral substance is prepared from achiral precursors, the first chiral molecule represents obligatorily 100 percent enantiomeric excess. Similar cases can be identified at the degradation of a racemate, for the last chiral molecule and the one-molecule excess obligatorily formed if a racemate contains an odd number of molecules. These cases have a particular significance in speculations regarding the origins of biological chirality and the molecular-level events in chiral autocatalysis. The paper gives a short summary of these problem
First Molecules, Biological Chirality, Origin(s) of Life
Origin(s) of biological chirality appear(s) to be intimately connected to origin(s) of life. Prebiotic evolution toward these important turning points can be traced back to single chiral molecules. These can be small (monomeric) units as amino acids or monosaccharides or oligomers as oligo-RNA type molecules. Earlier speculations about these two kinds of entries to biological chirality are critically reviewe
Single-molecule chirality
If a chiral substance is prepared from achiral precursors, the first chiral molecule represents obligatorily 100 percent enantiomeric excess. Similar cases can be identified at the degradation of a racemate, for the last chiral molecule and the one-molecule excess obligatorily formed if a racemate contains an odd number of molecules. These cases have a particular significance in speculations regarding the origins of biological chirality and the molecular-level events in chiral autocatalysis. The paper gives a short summary of these problem
- …