103 research outputs found
Bay of Bengal: From monsoons to mixing
The Bay of Bengal has a surprisingly large influence on the world. It nurtures the South Asian summer monsoon, a tremendous ocean-atmosphere-land phenomenon that delivers freshwater to more than a third of the human population
on this planet. During summer, southwesterly winds gather moisture from the ocean and carry it deep inland over the
Indian subcontinent, bringing welcome rains to a parched land. During winter, the winds reverse to northeasterly, and
the ocean circulation responds by dispersing the terrestrial freshwater run off concentrated in the northern part of the
bay
Recommended from our members
Deep convection in the Arctic: The evaluation of results from an OGCM with a new convection parameterization
The current generation of ocean general circulation models (OGCMS) uses a convective adjustment scheme to remove static instabilities and to parameterize shallow and deep convection. In simulations used to examine climate-related scenarios, investigators found that in the Arctic regions, the OGCM simulations did not produce a realistic vertical density structure, did not create the correct quantity of deep water, and did not use a time-scale of adjustment that is in agreement with tracer ages or observations. A possible weakness of the models is that the convective adjustment scheme does not represent the process of deep convection adequately. Consequently, a penetrative plume mixing scheme has been developed to parameterize the process of deep open-ocean convection in OGCMS. This new deep convection parameterization was incorporated into the Semtner and Chervin (1988) OGCM. The modified model (with the new parameterization) was run in a simplified Nordic Seas test basin: under a cyclonic wind stress and cooling, stratification of the basin-scale gyre is eroded and deep mixing occurs in the center of the gyre. In contrast, in the OGCM experiment that uses the standard convective adjustment algorithm, mixing is delayed and is wide-spread over the gyre
Numerical study of circulation on the inner Amazon Shelf
Author Posting. © Springer, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ocean Dynamics 58 (2008): 187-198, doi:10.1007/s10236-008-0139-4.We studied the circulation on the coastal
domain of the Amazon Shelf by applying the hydrodynamic
module of the Estuarine and Coastal Ocean
Model and Sediment Transport - ECOMSED. The first
barotropic experiment aimed to explain the major bathymetric
effects on tides and those generated by anisotropy
in sediment distribution. We analyzed the continental
shelf response of barotropic tides under realistic bottom
stress parametrization (Cd), considering sediment granulometry
obtained from a faciologic map, where river
mud deposits and reworked sediments areas are well distinguished,
among others classes of sediments. Very low
Cd values were set in the fluid mud regions off the Amapa
coast (1.0 10-4 ), in contrast to values around 3:5 10-3
for coarser sediment regions off the Para coast. Three-dimensional
experiments represented the Amazon River
discharge and trade winds, combined to barotropic tide
influences and induced vertical mixing. The quasi-resonant
response of the Amazon Shelf to the M2 tide act on
the local hydrodynamics by increasing tidal admittance,
along with tidal forcing at the shelf break and extensive
fluid mud regions. Harmonic analysis of modeled
currents agreed well with analysis of the AMASSEDS
observational data set. Tidal-induced vertical shear provided
strong homogenization of threshold waters, which
are subject to a kind of hydraulic control due to the topographic
steepness. Ahead of the hydraulic jump, the
low-salinity plume is disconnected from the bottom and
acquires negative vorticity, turning southeastward. Tides
act as a generator mechanism and topography, via hydraulic
control, as a maintainer mechanism for the low-salinity
frontal zone positioning. Tidally induced southeastward
plume fate is overwhelmed by northwestward
trade winds so that, along with background circulation,
probably play the most important role on the plume fate
and variability over the Amazon Shelf
Chronic non-transmural infarction has a delayed recovery of function following revascularization
<p>Abstract</p> <p>Background</p> <p>The time course of regional functional recovery following revascularization with regards to the presence or absence of infarction is poorly known. We studied the effect of the presence of chronic non-transmural infarction on the time course of recovery of myocardial perfusion and function after elective revascularization.</p> <p>Methods</p> <p>Eighteen patients (mean age 69, range 52-84, 17 men) prospectively underwent cine magnetic resonance imaging (MRI), delayed contrast enhanced MRI and rest/stress 99m-Tc-tetrofosmin single photon emission computed tomography (SPECT) before, one and six months after elective coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI).</p> <p>Results</p> <p>Dysfunctional myocardial segments (n = 337/864, 39%) were classified according to the presence (n = 164) or absence (n = 173) of infarction. Infarct transmurality in dysfunctional segments was largely non-transmural (transmurality = 31 ± 22%). Quantitative stress perfusion and wall thickening increased at one month in dysfunctional segments without infarction (p < 0.001), with no further improvement at six months. Despite improvements in stress perfusion at one month (p < 0.001), non-transmural infarction displayed a slower and lesser improvement in wall thickening at one (p < 0.05) and six months (p < 0.001).</p> <p>Conclusions</p> <p>Dysfunctional segments without infarction represent repetitively stunned or hibernating myocardium, and these segments improved both perfusion and function within one month after revascularization with no improvement thereafter. Although dysfunctional segments with non-transmural infarction improved in perfusion at one month, functional recovery was mostly seen between one and six months, possibly reflecting a more severe ischemic burden. These findings may be of value in the clinical assessment of regional functional recovery in the time period after revascularization.</p
Biocomposite films based on κ-carrageenan/locust bean gum blends and clays : physical and antimicrobial properties
The aims of this work were to evaluate the physical and antimicrobial properties of biodegradable films composed of mixtures of κ-carrageenan (κ-car) and locust bean gum (LBG) when organically modified clay Cloisite 30B (C30B) was dispersed in the biopolymer matrix. Film-forming solutions were prepared by adding C30B (ranging from 0 to 16 wt.%) into the κ-car/LBG solution (40/60 wt.%) with 0.3 % (w/v) of glycerol. Barrier properties (water vapour permeability, P vapour; CO2 and O2 permeabilities), mechanical properties (tensile strength, TS, and elongation-at-break, EB) and thermal stability of the resulting films were determined and related with the incorporation of C30B. Also, X-ray diffraction (XRD) was done in order to investigate the effect of C30B in film structure. Antimicrobial effects of these films against Listeria monocytogenes, Escherichia coli and Salmonella enterica were also evaluated. The increase of clay concentration causes a decrease of P vapour (from 5.34 × 10−11 to 3.19 × 10−11 g (m s Pa)−1) and an increase of the CO2 permeability (from 2.26 × 10−14 to 2.91 × 10−14 g (m s Pa)−1) and did not changed significantly the O2 permeability for films with 0 and 16 wt.% C30B, respectively. Films with 16 wt.% clay exhibited the highest values of TS (33.82 MPa) and EB (29.82 %). XRD patterns of the films indicated that a degree of exfoliation is attained depending on clay concentration. κ-car/LBG–C30B films exhibited an inhibitory effect only against L. monocytogenes. κ-car/LBG–C30B composite films are a promising alternative to synthetic films in order to improve the shelf life and safety of food products.J. T. Martins, A. I. Bourbon, A. C. Pinheiro and M. A. Cerqueira gratefully acknowledge the Fundacao para a Ciencia e Tecnologia (FCT, Portugal) for their fellowships (SFRH/BD/32566/2006, SFRH/BD/73178/2010, SFRH/BD/48120/2008 and SFRH/BPD/72753/2010, respectively), and B. W. S. Souza acknowledges the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES, Brazil)
The formation and fate of internal waves in the South China Sea
Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for man-made structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects6,7. For over a decade, studies8-11 have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions
The formation and fate of internal waves in the South China Sea
Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 521 (2015): 65-69, doi:10.1038/nature14399.Internal gravity waves, the subsurface analogue of the familiar surface gravity
waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their
breaking, they impact a panoply of ocean processes, such as the supply of nutrients
for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3;
they also pose hazards for manmade structures in the ocean4. Generated primarily
by the wind and the tides, internal waves can travel thousands of kilometres from
their sources before breaking5, posing severe challenges for their observation and
their inclusion in numerical climate models, which are sensitive to their effects6-7.
Over a decade of studies8-11 have targeted the South China Sea, where the oceans’
most powerful internal waves are generated in the Luzon Strait and steepen
dramatically as they propagate west. Confusion has persisted regarding their
generation mechanism, variability and energy budget, however, due to the lack of
in-situ data from the Luzon Strait, where extreme flow conditions make
measurements challenging. Here we employ new observations and numerical
models to (i) show that the waves begin as sinusoidal disturbances rather than
from sharp hydraulic phenomena, (ii) reveal the existence of >200-m-high
breaking internal waves in the generation region that give rise to turbulence levels
>10,000 times that in the open ocean, (iii) determine that the Kuroshio western
boundary current significantly refracts the internal wave field emanating from the
Luzon Strait, and (iv) demonstrate a factor-of-two agreement between modelled
and observed energy fluxes that enables the first observationally-supported energy
budget of the region. Together, these findings give a cradle-to-grave picture of
internal waves on a basin scale, which will support further improvements of their
representation in numerical climate predictions.Our work was supported by the U.S. Office of Naval Research and
the Taiwan National Science Council.2015-10-2
- …