13 research outputs found
Exploring Subcellular Responses of Prostate Cancer Cells to X-Ray Exposure by Raman Mapping
Understanding the response of cancer cells to ionising radiation is a crucial step in modern radiotherapy. Raman microspectroscopy, together with Partial Least Squares Regression (PLSR) analysis has been shown to be a powerful tool for monitoring biochemical changes of irradiated cells on the subcellular level. However, to date, the majority of Raman studies have been performed using a single spectrum per cell, giving a limited view of the total biochemical response of the cell. In the current study, Raman mapping of the whole cell area was undertaken to ensure a more comprehensive understanding of the changes induced by X-ray radiation. On the basis of the collected Raman spectral maps, PLSR models were constructed to elucidate the time-dependent evolution of chemical changes induced in cells by irradiation, and the performance of PLSR models based on whole cell averages as compared to those based on average Raman spectra of cytoplasm and nuclear region. On the other hand, prediction of X-ray doses for individual cellular component showed that cytoplasmic and nuclear regions should be analysed separately. Finally, the advantage of the mapping technique over single point measurements was verified by a comparison of the corresponding PLSR models
Raman spectroscopy of selected carbonaceous samples
This paper presents the results of Raman spectra measured on carbonaceous materials ranging from greenschist facies to granulite-facies graphite (Anchimetamorphism and Epimetamorphism zones). Raman spectroscopy has come to be regarded as a more appropriate tool than X-ray diffraction for study of highly ordered carbon materials, including chondritic matter, soot, polycyclic aromatic hydrocarbons and evolved coal samples.This work demonstrates the usefulness of the Raman spectroscopy analysis in determining internal crystallographic structure (disordered lattice, heterogeneity). Moreover, this methodology permits the detection of differences within the meta-anthracite rank, semi-graphite and graphite stages for the samples included in this study. In the first order Raman spectra, the bands located near to c.a. 1350cm (defects and disorder mode A) and 1580cm (in plane E zone-centre mode) contribute to the characterization and determination of the degree of structural evolution and graphitization of the carbonaceous samples. The data from Raman spectroscopy were compared with parameters obtained by means of structural, chemical and optical microscopic analysis carried out on the same carbonaceous samples. The results revealed some positive and significant relationships, although the use of reflectance as a parameter for following the increase in structural order in natural graphitized samples was subject to limitations
Saliva as a first-line diagnostic tool: A spectral challenge for identification of cancer biomarkers
Structure and Biological Properties of Surface-Engineered Carbon Nanofibers
The aim of this work was to manufacture, using the electrospinning technique, polyacrylonitrile- (PAN-) based carbon nanofibers in the form of mats for biomedical applications. Carbon nanofibers obtained by carbonization of the PAN nanofibers to 1000°C (electrospun carbon nanofibers (ECNF)) were additionally oxidized in air at 800°C under reduced pressure (electrospun carbon nanofibers oxidized under reduced pressure (ECNFV)). The oxidative treatment led to partial removal of a structurally less-ordered carbon phase from the near-surface region of the carbon nanofibers. Both types of carbon fibrous mats were studied using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), XRD, and Raman spectroscopy. The morphology, microstructure, and surface properties of both materials were analyzed. The oxidative treatment of carbon nanofibers significantly changed their surface morphology and physical properties (wettability, surface electrical resistance). Biological tests (genotoxicity, fibroblast, and human osteoblast-like MG63 cultures) were carried out in contact with both materials. Genotoxicity study conducted by means of comet assays revealed significant differences between both carbon nanofibers. Fibroblasts contacted with the as-received carbon nanofibers (ECNF) showed a significantly higher level of DNA damage compared to control and oxidized carbon nanofibers (ECNFV). The ECNFV nanofibers were not cytotoxic, whereas ECNF nanofibers contacted with both types of cells indicated a cytotoxic effect. The ECNFV introduced into cell culture did not affect the repair processes in the cells contacting them
Carbon Nanofibers Coated with Silicon/Calcium-Based Compounds for Medical Application
The aim of this work was to develop a method for the manufacture of carbon nanofibers in the form of mats containing silicon and calcium compounds with potential biomedical application. Carbon nanofibers (ECNF) were prepared from the electrospun polyacrylonitrile (PAN) nanofibers. The electrospun polymer nanofibers were heat treated up to 1000°C to obtain carbon nanofibers. The surface of ECNF was covered with a silica-calcium sol (ECNF+Si/Ca) by dip-coating technique followed by the stabilization process. Both types of carbon nanofibers, i.e., the as-received and covered with the sol, were tested to confirm their osteoconductive properties. Biological tests were performed, including genotoxicity, cytotoxicity, and alkaline phosphatase (ALP) activity. Morphology of adhering cells to nanofiber surface was described. The nanofibers were subjected to a bioactivity test in contact with SBF artificial plasma. Biological tests have revealed that the nanofiber-modified ECNF+Si/Ca in contact with osteoblast cells were biocompatible, and the level of cytotoxicity was lower compared to the control. The ALP activity of the modified nanofibers was higher than nonmodified nanofibers and indicates potential applications of such carbon materials in the form of mats as a substrate for bone tissue regeneration
The Impact of Preprocessing Methods for a Successful Prostate Cell Lines Discrimination Using Partial Least Squares Regression and Discriminant Analysis Based on Fourier Transform Infrared Imaging
Fourier transform infrared spectroscopy (FT-IR) is widely used in the analysis of the chemical composition of biological materials and has the potential to reveal new aspects of the molecular basis of diseases, including different types of cancer. The potential of FT-IR in cancer research lies in its capability of monitoring the biochemical status of cells, which undergo malignant transformation and further examination of spectral features that differentiate normal and cancerous ones using proper mathematical approaches. Such examination can be performed with the use of chemometric tools, such as partial least squares discriminant analysis (PLS-DA) classification and partial least squares regression (PLSR), and proper application of preprocessing methods and their correct sequence is crucial for success. Here, we performed a comparison of several state-of-the-art methods commonly used in infrared biospectroscopy (denoising, baseline correction, and normalization) with the addition of methods not previously used in infrared biospectroscopy classification problems: Mie extinction extended multiplicative signal correction, Eiler’s smoothing, and probabilistic quotient normalization. We compared all of these approaches and their effect on the data structure, classification, and regression capability on experimental FT-IR spectra collected from five different prostate normal and cancerous cell lines. Additionally, we tested the influence of added spectral noise. Overall, we concluded that in the case of the data analyzed here, the biggest impact on data structure and performance of PLS-DA and PLSR was caused by the baseline correction; therefore, much attention should be given, especially to this step of data preprocessing