1,267 research outputs found

    On Natural Inflation and Moduli Stabilisation in String Theory

    Full text link
    Natural inflation relies on the existence of an axion decay constant which is super-Planckian. In string theory only sub-Planckian axion decay constants have been found in any controlled regime. However in field theory it is possible to generate an enhanced super-Planckian decay constant by an appropriate aligned mixing between axions with individual sub-Planckian decay constants. We study the possibility of such a mechanism in string theory. In particular we construct a new realisation of an alignment scenario in type IIA string theory compactifications on a Calabi-Yau where the alignment is induced through fluxes. Within field theory the original decay constants are taken to be independent of the parameters which induce the alignment. In string theory however they are moduli dependent quantities and so interact gravitationally with the physics responsible for the mixing. We show that this gravitational effect of the fluxes on the moduli can precisely cancel any enhancement of the effective decay constant. This censorship of an effective super-Planckian decay constant depends on detailed properties of Calabi-Yau moduli spaces and occurs for all the examples and classes that we study. We expand these results to a general superpotential assuming only that the axion superpartners are fixed supersymmetrically and are able to show for a large class of Calabi-Yau manifolds, but not all, that the cancellation effect occurs and is independent of the superpotential. We also study simple models where the moduli are fixed non-supersymmetrically and find that similar cancellation behaviour can emerge. Finally we make some comments on a possible generalisation to axion monodromy inflation models.Comment: 24 pages. V2: Appendix on backreaction in axion monodromy added. References adde

    The Weak Gravity Conjecture and Scalar Fields

    Full text link
    We propose a generalisation of the Weak Gravity Conjecture in the presence of scalar fields. The proposal is guided by properties of extremal black holes in N=2{\cal N}=2 supergravity, but can be understood more generally in terms of forbidding towers of stable gravitationally bound states. It amounts to the statement that there must exist a particle on which the gauge force acts more strongly than gravity and the scalar forces combined. We also propose that the scalar force itself should act on this particle stronger than gravity. This implies that generically the mass of this particle decreases exponentially as a function of the scalar field expectation value for super-Planckian variations, which is behaviour predicted by the Refined Swampland Conjecture. In the context of N=2{\cal N}=2 supergravity the Weak Gravity Conjecture bound can be tied to bounds on scalar field distances in field space. Guided by this, we present a general proof that for any linear combination of moduli in any Calabi-Yau compactification of string theory the proper field distance grows at best logarithmically with the moduli values for super-Planckian distances.Comment: 25 pages. v2: Modified and extended section 4.1. v3: Clarifications added, published versio

    Models of Particle Physics from Type IIB String Theory and F-theory: A Review

    Full text link
    We review particle physics model building in type IIB string theory and F-theory. This is a region in the landscape where in principle many of the key ingredients required for a realistic model of particle physics can be combined successfully. We begin by reviewing moduli stabilisation within this framework and its implications for supersymmetry breaking. We then review model building tools and developments in the weakly coupled type IIB limit, for both local D3-branes at singularities and global models of intersecting D7-branes. Much of recent model building work has been in the strongly coupled regime of F-theory due to the presence of exceptional symmetries which allow for the construction of phenomenologically appealing Grand Unified Theories. We review both local and global F-theory model building starting from the fundamental concepts and tools regarding how the gauge group, matter sector and operators arise, and ranging to detailed phenomenological properties explored in the literature.Comment: 79 pages, Invited review article for the International Journal of Modern Physics

    Towards large r from [p,q]-inflation

    Get PDF
    The recent discovery of B-mode polarizations in the CMB by the BICEP2 collaboration motivates the study of large-field inflation models which can naturally lead to significant tensor-to-scalar ratios. A class of such models in string theory are axion monodromy models, where the shift symmetry of an axion is broken by some branes. In type IIB string theory such models so far utilized NS5 branes which lead to a linear potential with an induced tensor-to-scalar ratio of r0.07r \sim 0.07. In this short note we study a modification of the scenario to include [p,q] 7-branes and show that this leads to an enhanced tensor-to-scalar ratio r0.14r \sim 0.14. Unlike 5-branes, 7-branes are in-principle compatible with supersymmetry, however we find that an implementation of the inflationary scenario requires an explicit breaking of supersymmetry by the 7-branes during inflation. This leads to similar challenges as in 5-brane models. We discuss the relation to high-scale supersymmetry breaking after inflation.Comment: 8 pp; v2: references added, typos correcte

    On Gauge Threshold Corrections for Local IIB/F-theory GUTs

    Full text link
    We study gauge threshold corrections for local GUT models in IIB/F-theory. Consistency with holomorphy requirements of supergravity and the Kaplunovsky-Louis formula implies that the unification scale is enhanced by the bulk radius R from the string scale to M_X =RM_S. We argue that the stringy interpretation of this is via a locally uncancelled tadpole sourced by the hypercharge flux. This sources closed string modes propagating into the bulk; equivalently open string gauge coupling running up to the winding scale M_X. The enhancement to R M_s is tied to GUT breaking by a globally trivial hypercharge flux and will occur in all models realising this mechanism.Comment: 4 pages; v2. journal versio

    Hypercharge Flux in IIB and F-theory: Anomalies and Gauge Coupling Unification

    Full text link
    We analyse hypercharge flux GUT breaking in F-theory/Type IIB GUT models with regards to its implications for anomaly cancellation and gauge coupling unification. To this aim we exploit the Type IIB limit and consider 7-brane configurations that for the first time are guaranteed to exhibit net hypercharge flux restriction to matter curves. We show that local F-theory models with anomalies of type U(1)_Y-U(1)^2 in the massless spectrum can be consistent only if such additional U(1)s are globally geometrically massive (in the sense that they arise from non-Kahler deformations of the Calabi-Yau four-fold). Further, in such cases of geometrically massive U(1)s hypercharge flux can induce new anomalies of type U(1)_Y^2-U(1) in the massless spectrum, violating constraints in local models forbidding such anomalies. In particular this implies that it is possible to construct models exhibiting a U(1)_{PQ} global symmetry which have hypercharge flux doublet-triplet splitting and no further exotics. We also show that the known hypercharge flux induced splitting of the gauge couplings in IIB models at tree-level can be reduced by a factor of 5 by employing a more F-theoretic twisting of U(1) flux by hypercharge flux bringing it to well within MSSM 2-loop results. In the case of net restriction of hypercharge flux to matter curves this tree-level splitting becomes more involved, is tied to the vacuum expectation values of certain closed-string fields, and therefore gauge coupling unification becomes tied to the question of moduli stabilisation.Comment: 27 pages. v2: Expanded discussion on anomalies and showed that geometrically massive U(1)s of Peccei-Quinn type are compatible with hypercharge flux doublet-triplet splitting with no exotic

    U(1) symmetries in F-theory GUTs with multiple sections

    Get PDF
    We present a systematic construction of F-theory compactifications with Abelian gauge symmetries in addition to a non-Abelian gauge group G. The formalism is generally applicable to models in global Tate form but we focus on the phenomenologically interesting case of G=SU(5). The Abelian gauge factors arise due to extra global sections resulting from a specific factorisation of the Tate polynomial which describes the elliptic fibration. These constructions, which accommodate up to four different U(1) factors, are worked out in detail for the two possible embeddings of a single U(1) factor into E8, usually denoted SU(5) x U(1)_X and SU(5) x U(1)_PQ. The resolved models can be understood either patchwise via a small resolution or in terms of a P_{1,1,2}[4] description of the elliptic fibration. We derive the U(1) charges of the fields from the geometry, construct the U(1) gauge fluxes and exemplify the structure of the Yukawa interaction points. A particularly interesting result is that the global SU(5) x U(1)_PQ model exhibits extra SU(5)-singlet states which are incompatible with a single global decomposition of the 248 of E8. The states in turn lead to new Yukawa type couplings which have not been considered in local model building.Comment: 46 pages, 3 figures; v2 typos corrected, citations adde

    Effective action of (massive) IIA on manifolds with SU(3) structure

    Full text link
    In this paper we consider compactifications of massive type IIA supergravity on manifolds with SU(3) structure. We derive the gravitino mass matrix of the effective four-dimensional N = 2 theory and show that vacuum expectation values of the scalar fields naturally induce spontaneous partial supersymmetry breaking. We go on to derive the superpotential and the Kaehler potential for the resulting N = 1 theories. As an example we consider the SU(3) structure manifold SU(3)/U(1)xU(1) and explicitly find N = 1 supersymmetric minima where all the moduli are stabilised at non-trivial values without the use of non-perturbative effects.Comment: 25 pages, 2 figures. References added and typos corrected to match published versio

    M-theory Compactifications to Three Dimensions with M2-brane Potentials

    Get PDF
    We study a class of compactifications of M-theory to three dimensions that preserve N=2 supersymmetry and which have the defining feature that a probe space-time filling M2 brane feels a non-trivial potential on the internal manifold. Using M-theory/F-theory duality such compactifications include the uplifts of 4-dimensional N=1 type IIB compactifications with D3 potentials to strong coupling. We study the most general 8-dimensional manifolds supporting these properties, derive the most general flux that induces an M2 potential, and show that it is parameterised in terms of two real vectors. We study the supersymmetry equations when only this flux is present and show that over the locus where the M2 potential is non-vanishing the background takes the form of a Calabi-Yau three-fold fibered over a 2-dimensional base spanned by the flux vectors, while at the minima of the potential the flux vanishes. Allowing also for non-vanishing four-form flux with one leg in the internal directions we find that the Calabi-Yau three-fold in the fibration is replaced by an SU(3)-structure manifold with torsion classes satisfying 2 W_4=-W_5.Comment: 40 page
    corecore