15 research outputs found
Biphasic Hyalinizing Psammomatous Renal Cell Carcinoma (BHP RCC): A Distinctive Neoplasm Associated with Somatic NF2 Mutations
We report 8 cases of a distinctive, previously undescribed renal cell carcinoma associated with somatic mutations in the neurofibromin 2 (NF2) gene. All patients were adults, ranging from 51 to 78 years of age and of cases of known sex 6 of 7 were males. The carcinomas were predominantly unencapsulated, and all had a rounded, nodular interface with the native kidney. The neoplasms were all solid with papillary architecture evident in most cases (7/8), while 1 was only tubular. All cases were biphasic, characterized by larger and smaller carcinoma cells. The smaller cells clustered around basement membrane material similar to the characteristic pattern of the t(6;11) renal cell carcinoma associated with TFEB gene fusions. In 6 of 8 carcinomas, branching nodules of small cells clustered around basement membrane material within larger acini yielding a distinctive glomeruloid pattern. In 6 of 8 carcinomas, the small cells were focally spindle-shaped and unassociated with the basement membrane material. The stroma was sclerotic in all 8 carcinomas, and all 8 contained psammoma bodies that were abundant in 2. In some carcinomas, focal or predominant areas had a less distinctive appearance; 2 had areas that resembled clear cell renal cell carcinoma, 2 had high-grade eosinophilic areas, while 1 had branching tubular architecture that resembled mucinous tubular and spindle cell carcinoma. Two carcinomas demonstrated cellular necrosis. Although we have minimal clinical follow-up, 1 case presented with distant metastasis, progressed and resulted in patient death. While NF2 mutations may be found in other established renal cell carcinoma subtypes (often as secondary genetic alterations), they are potentially the genetic driver of this distinctive entity
Insulin-like growth factor-1 receptor expression in upper tract urothelial carcinoma
Insulin-like growth factor-1 receptor (IGF1R) is a transmembrane tyrosine kinase receptor that plays a crucial role in cell proliferation, growth, differentiation, and apoptosis. IGF1R overexpression has been observed in several cancers, including invasive bladder carcinomas, as a potential prognostic factor. Given known biologic differences between upper and lower urinary tract urothelial carcinoma, we assessed the expression status and prognostic significance of IGF1R in upper tract urothelial carcinoma (UTUC). Two tissue microarrays (TMAs) were built from 99 Japanese patients with non-metastatic UTUC submitted to radical nephroureterectomy between 1997 and 2011. TMAs were constructed with triplicate tumor and paired benign urothelium. Membranous IGF1R staining was evaluated using immunohistochemistry. Two scoring methods were applied (Her2-score and H-score). The highest score was assigned to each tumor. IGF1R positivity was defined as Her2-score ≥1+. Association with clinicopathologic parameters and outcome was assessed using hazard ratios (HR) with 95% confidence intervals (CI) and adjusted P values. We found positive IGF1R expression in 70% of UTUC. Outcomes were as follows: tumor recurrence, 33%; tumor progression, 59%; overall mortality, 33%; and cancer-specific mortality, 30%. IGF1R was not associated with any clinicopathologic features. In addition, IGF1R expression was not associated with tumor recurrence (HR=0.54, CI=0.25-1.1, P=0.11), tumor progression (HR=1.6, CI=0.8-3.1, P=0.19), overall mortality (HR=1.5, CI=0.68-3.4, P=0.31), or cancer-specific mortality (HR=1.6, CI=0.68-3.8, P=0.27). Positive IGF1R expression was found in more than two thirds of UTUC. This finding provides a rationale to investigate IGF1R as a potential therapeutic target in UTUC. In contrast to bladder cancer, IGF1R expression in UTUC did not correlate with outcome, further pointing to biologic differences between UTUC and bladder cancer
Widely metastatic IDH1-mutant glioblastoma with oligodendroglial features and atypical molecular findings: a case report and review of current challenges in molecular diagnostics
Abstract Background Gliomas with 1p/19q-codeletion as well as mutation of isocitrate dehydrogenase (IDH) 1 are typically characterized as oligodendrogliomas with comparatively good response to treatment with radiation and chemotherapy. Case presentation We present the case of a 28-year-old man with an IDH1 and TP53 mutant high grade glioma with abnormalities in chromosomes 1 and 19 suggestive of anaplastic oligodendroglioma that rapidly progressed to widespread metastatic disease. Biopsy of a liver lesion confirmed metastasis of the patient’s known brain primary and chemotherapy with temozolomide was initiated. The patient’s rapidly growing tumor burden with fulminant liver failure and tumor lysis led to multisystem failure of which the patient died. Further molecular testing illustrated features more consistent with glioblastoma: multiple large chromosomal aberrations including loss of whole chromosome 1 and 2q; gain/amplification of MYCN, MET, and CDK4; loss of CDKN2A/B; and an ATRX mutation. Conclusion This case illustrates the importance of higher level molecular diagnostic testing for patients with particularly aggressive disease progression that is not concordant with standard prognoses. Additional data on cases with atypical alterations of 1p and 19q are needed to better understand the distinct biology of these cancers so that appropriate therapies can be developed
Recommended from our members
Telomere alterations in neurofibromatosis type 1-associated solid tumors.
The presence of Alternative lengthening of telomeres (ALT) and/or ATRX loss, as well as the role of other telomere abnormalities, have not been formally studied across the spectrum of NF1-associated solid tumors. Utilizing a telomere-specific FISH assay, we classified tumors as either ALT-positive or having long (without ALT), short, or normal telomere lengths. A total of 426 tumors from 256 NF1 patients were evaluated, as well as 99 MPNST tumor samples that were sporadic or of unknown NF1 status. In the NF1-glioma dataset, ALT was present in the majority of high-grade gliomas: 14 (of 23; 60%) in contrast to only 9 (of 47; 19%) low-grade gliomas (p = 0.0009). In the subset of ALT-negative glioma cases, telomere lengths were estimated and we observed 17 (57%) cases with normal, 12 (40%) cases with abnormally long, and only 1 (3%) case with short telomeres. In the NF1-associated malignant nerve sheath tumor (NF1-MPNST) set (n = 75), ALT was present in 9 (12%). In the subset of ALT-negative NF1-MPNST cases, telomeres were short in 9 (38%), normal in 14 (58%) and long in 1 (3%). In the glioma set, overall survival was significantly decreased for patients with ALT-positive tumors (p < 0.0001). In the NF1-MPNST group, overall survival was superior for patients with tumors with short telomeres (p = 0.003). ALT occurs in a subset of NF1-associated solid tumors and is usually restricted to malignant subsets. In contrast, alterations in telomere lengths are more prevalent than ALT
Recommended from our members
Early Noninvasive Detection of Response to Targeted Therapy in Non-Small Cell Lung Cancer
With the advent of precision oncology, there is an urgent need to develop improved methods for rapidly detecting responses to targeted therapies. Here, we have developed an ultrasensitive measure of cell-free tumor load using targeted and whole-genome sequencing approaches to assess responses to tyrosine kinase inhibitors in patients with advanced lung cancer. Analyses of 28 patients treated with anti-EGFR or HER2 therapies revealed a bimodal distribution of cell-free circulating tumor DNA (ctDNA) after therapy initiation, with molecular responders having nearly complete elimination of ctDNA (>98%). Molecular nonresponders displayed limited changes in ctDNA levels posttreatment and experienced significantly shorter progression-free survival (median 1.6 vs. 13.7 months, P < 0.0001; HR = 66.6; 95% confidence interval, 13.0-341.7), which was detected on average 4 weeks earlier than CT imaging. ctDNA analyses of patients with radiographic stable or nonmeasurable disease improved prediction of clinical outcome compared with CT imaging. These analyses provide a rapid approach for evaluating therapeutic response to targeted therapies and have important implications for the management of patients with cancer and the development of new therapeutics.Significance: Cell-free tumor load provides a novel approach for evaluating longitudinal changes in ctDNA during systemic treatment with tyrosine kinase inhibitors and serves an unmet clinical need for real-time, noninvasive detection of tumor response to targeted therapies before radiographic assessment.See related commentary by Zou and Meyerson, p. 1038
White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer
Liquid biopsies are providing new opportunities for detection of residual disease in cell-free DNA (cfDNA) after surgery but may be confounded through identification of alterations arising from clonal hematopoiesis. Here, we identify circulating tumor-derived DNA (ctDNA) alterations through ultrasensitive targeted sequencing analyses of matched cfDNA and white blood cells from the same patient. We apply this approach to analyze samples from patients in the CRITICS trial, a phase III randomized controlled study of perioperative treatment in patients with operable gastric cancer. After filtering alterations from matched white blood cells, the presence of ctDNA predicts recurrence when analyzed within nine weeks after preoperative treatment and after surgery in patients eligible for multimodal treatment. These analyses provide a facile method for distinguishing ctDNA from other cfDNA alterations and highlight the utility of ctDNA as a predictive biomarker of patient outcome to perioperative cancer therapy and surgical resection in patients with gastric cancer