111 research outputs found
A possible source mechanism for magnetotail current sheet flapping
The origin of the flapping motions of the current sheet in the Earth's magnetotail is one of the most interesting questions of magnetospheric dynamics yet to be solved. We have used a polar plane simulation from the global hybrid-Vlasov model Vlasiator to study the characteristics and source of current sheet flapping in the center of the magnetotail. The characteristics of the simulated signatures agree with observations reported in the literature. The flapping is initiated by a hemispherically asymmetric magnetopause perturbation, created by subsolar magnetopause reconnection, that is capable of displacing the tail current sheet from its nominal position. The current sheet displacement propagates downtail at the same pace as the driving magnetopause perturbation. The initial current sheet displacement launches a standing magnetosonic wave within the tail resonance cavity. The travel time of the wave within the local cavity determines the period of the subsequent flapping signatures. Compression of the tail lobes due to added flux affects the cross-sectional width of the resonance cavity as well as the magnetosonic speed within the cavity. These in turn modify the wave travel time and flapping period. The compression of the resonance cavity may also provide additional energy to the standing wave, which may lead to strengthening of the flapping signature. It may be possible that the suggested mechanism could act as a source of kink-like waves that have been observed to be emitted from the center of the tail and to propagate toward the dawn and dusk flanks.Peer reviewe
Propagation of a shock-related disturbance in the Earth's magnetosphere
The Grand Unified Magnetosphere-Ionosphere Coupling Simulation, version 4, magnetohydrodynamic simulation of the interplanetary shock event on 9 November 2002 is used to determine the shock-associated disturbance propagation characteristics inside the Earth's magnetosphere. Interaction of an interplanetary fast forward shock with the magnetopause caused a shock-related disturbance inside the magnetosphere that propagated at a speed significantly higher than that in the solar wind or magnetosheath. The propagation direction of the disturbance was calculated from the Rankine-Hugoniot conditions, velocity and magnetic coplanarity, and minimum variance analysis and is shown to vary in different regions of the magnetosphere. Furthermore, the impulse disturbance wave mode changes as the plasma and field conditions change inside the magnetosphere. These results bring important new information about the propagation processes that is not directly obtainable from point measurements made by (even several) spacecraft. On the other hand, comparison of ionospheric observations from the IMAGE magnetometer chain with geosynchronous data allow us to also interpret the double step structure observed at dayside geosynchronous orbit, which is below the simulation resolution. This combination provides us with quite a complete view on shock propagation inside the magnetosphere.Peer reviewe
Tail reconnection in the global magnetospheric context : Vlasiator first results
The key dynamics of the magnetotail have been researched for decades and have been associated with either three-dimensional (3-D) plasma instabilities and/or magnetic reconnection. We apply a global hybrid-Vlasov code, Vlasiator, to simulate reconnection self-consistently in the ion kinetic scales in the noon-midnight meridional plane, including both dayside and nightside reconnection regions within the same simulation box. Our simulation represents a numerical experiment, which turns off the 3-D instabilities but models ion-scale reconnection physically accurately in 2-D. We demonstrate that many known tail dynamics are present in the simulation without a full description of 3-D instabilities or without the detailed description of the electrons. While multiple reconnection sites can coexist in the plasma sheet, one reconnection point can start a global reconfiguration process, in which magnetic field lines become detached and a plasmoid is released. As the simulation run features temporally steady solar wind input, this global reconfiguration is not associated with sudden changes in the solar wind. Further, we show that lobe density variations originating from dayside reconnection may play an important role in stabilising tail reconnection.Peer reviewe
Phase space density analysis of outer radiation belt electron energization and loss during geoeffective and nongeoeffective sheath regions
Coronal mass ejection driven sheath regions are one of the key drivers of drastic outer radiation belt responses. The response can however be significantly different based on the sheath properties and the associated inner magnetospheric wave activity. We performed two case studies on the effects of sheaths on outer belt electrons of various energies using data from the Van Allen Probes. One sheath caused a major geomagnetic disturbance and the other had only a minor impact. We especially investigated the phase space density (PSD) of seed, core, and ultrarelativistic electrons to determine the dominant energization and loss processes taking place during the events. Both sheaths produced substantial variation in the electron fluxes from tens of kiloelectronvolts up to ultrarelativistic energies. The responses were however the opposite: the geoeffective sheath mainly led to enhancement, while the nongeoeffective one caused a depletion throughout most of the outer belt. The case studies highlight that both inward and outward radial transport driven by ultra-low frequency waves played an important role in both electron energization and loss. Additionally, PSD radial profiles revealed a local peak that indicated significant acceleration to core energies by chorus waves during the geoeffective event. The distinct responses and different mechanisms in action during these events were related to the timing of the peaked solar wind dynamic pressure causing magnetopause compression, and the differing levels of substorm activity. The most remarkable changes in the radiation belt system occurred in key sheath sub-regions near the shock and the ejecta leading edge.Peer reviewe
Hybrid-Vlasov modeling of three-dimensional dayside magnetopause reconnection
Dayside magnetic reconnection at the magnetopause, which is a major driver of space weather, is studied for the first time in a three-dimensional (3D) realistic setup using a hybrid-Vlasov kinetic model. A noon-midnight meridional plane simulation is extended in the dawn-dusk direction to cover 7 Earth radii. The southward interplanetary magnetic field causes magnetic reconnection to occur at the subsolar magnetopause. Perturbations arising from kinetic instabilities in the magnetosheath appear to modulate the reconnection. Its characteristics are consistent with multiple, bursty, and patchy magnetopause reconnection. It is shown that the kinetic behavior of the plasma, as simulated by the model, has consequences on the applicability of methods such as the four-field junction to identify and analyze magnetic reconnection in 3D kinetic simulations.Peer reviewe
Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation
In this paper we present the first identification of foreshock cavitons and the formation of spontaneous hot flow anomalies (SHFAs) with the Vlasiator global magnetospheric hybrid-Vlasov simulation code. In agreement with previous studies we show that cavitons evolve into SHFAs. In the presented run, this occurs very near the bow shock. We report on SHFAs surviving the shock crossing into the down-stream region and show that the interaction of SHFAs with the bow shock can lead to the formation of a magnetosheath cavity, previously identified in observations and simulations. We report on the first identification of long-term local weakening and erosion of the bow shock, associated with a region of increased foreshock SHFA and caviton formation, and repeated shock crossings by them. We show that SHFAs are linked to an increase in suprathermal particle pitch-angle spreads. The realistic length scales in our simulation allow us to present a statistical study of global caviton and SHFA size distributions, and their comparable size distributions support the theory that SHFAs are formed from cavitons. Virtual spacecraft observations are shown to be in good agreement with observational studies.Peer reviewe
Fast plasma sheet flows and X line motion in the Earth's magnetotail: results from a global hybrid-Vlasov simulation
Fast plasma flows produced as outflow jets from reconnection sites or X lines
are a key feature of the dynamics in the Earth's magnetosphere. We have used
a polar plane simulation of the hybrid-Vlasov model Vlasiator, driven by
steady southward interplanetary magnetic field and fast solar wind, to study
fast plasma sheet ion flows and related magnetic field structures in the
Earth's magnetotail. In the simulation, lobe reconnection starts to produce
fast flows after the increasing pressure in the lobes has caused the plasma
sheet to thin sufficiently. The characteristics of the earthward and tailward
fast flows and embedded magnetic field structures produced by multi-point
tail reconnection are in general agreement with spacecraft measurements
reported in the literature. The structuring of the flows is caused by
internal processes: interactions between major X points determine the
earthward or tailward direction of the flow, while interactions between minor
X points, associated with leading edges of magnetic islands carried by the
flow, induce local minima and maxima in the flow speed. Earthward moving
flows are stopped and diverted duskward in an oscillatory (bouncing) manner
at the transition region between tail-like and dipolar magnetic fields.
Increasing and decreasing dynamic pressure of the flows causes the transition
region to shift earthward and tailward, respectively. The leading edge of the
train of earthward flow bursts is associated with an earthward propagating
dipolarization front, while the leading edge of the train of tailward flow
bursts is associated with a tailward propagating plasmoid. The impact of the
dipolarization front with the dipole field causes magnetic field variations
in the Pi2 range. Major X points can move either earthward or tailward,
although tailward motion is more common. They are generally not advected by
the ambient flow. Instead, their velocity is better described by local
parameters, such that an X point moves in the direction of increasing
reconnection electric field strength. Our results indicate that ion kinetics
might be sufficient to describe the behavior of plasma sheet bulk ion flows
produced by tail reconnection in global near-Earth simulations.</p
Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath
We report ion acceleration by flux transfer events in the terrestrial magnetosheath in a global two-dimensional hybrid-Vlasov polar plane simulation of Earth's solar wind interaction. In the model we find that propagating flux transfer events created in magnetic reconnection at the dayside magnetopause drive fast-mode bow waves in the magnetosheath, which accelerate ions in the shocked solar wind flow. The acceleration at the bow waves is caused by a shock drift-like acceleration process under stationary solar wind and interplanetary magnetic field upstream conditions. Thus, the energization is not externally driven but results from plasma dynamics within the magnetosheath. Energetic proton populations reach the energy of 30 keV, and their velocity distributions resemble time-energy dispersive ion injections observed by the Cluster spacecraft in the magnetosheath.Peer reviewe
Outer radiation belt and inner magnetospheric response to sheath regions of coronal mass ejections : a statistical analysis
The energetic electron content in the Van Allen radiation belts surrounding the Earth can vary dramatically at several timescales, and these strong electron fluxes present a hazard for spacecraft traversing the belts. The belt response to solar wind driving is, however, largely unpredictable, and the direct response to specific large-scale heliospheric structures has not been considered previously. We investigate the immediate response of electron fluxes in the outer belt that are driven by sheath regions preceding interplanetary coronal mass ejections and the associated wave activity in the inner magnetosphere. We consider the events recorded from 2012 to 2018 in the Van Allen Probes era to utilise the energy- and radial-distance-resolved electron flux observations of the twin spacecraft mission. We perform a statistical study of the events by using the superposed epoch analysis in which the sheaths are superposed separately from the ejecta and resampled to the same average duration. Our results show that the wave power of ultra-low frequency Pc5 and electromagnetic ion cyclotron waves, as measured by a Geostationary Operational Environmental Satellite (GOES), is higher during the sheath than during the ejecta. However, the level of chorus wave power, as measured by the Van Allen Probes, remains approximately the same due to similar substorm activity during the sheath and ejecta. Electron flux enhancements are common at low energies ( 4). It is distinctive that the depletion extends to lower energies at larger distances. We suggest that this L-shell and energy-dependent depletion results from the magnetopause shadowing that dominates the losses at large distances, while the wave-particle interactions dominate closer to the Earth. We also show that non-geoeffective sheaths cause significant changes in the outer belt electron fluxes.Peer reviewe
ULF Wave Transmission Across Collisionless Shocks : 2.5D Local Hybrid Simulations
We study the interaction of upstream ultralow frequency (ULF) waves with collisionless shocks by analyzing the outputs of 11 2D local hybrid simulation runs. Our simulated shocks have Alfvenic Mach numbers between 4.29 and 7.42 and their theta BN angles are 15 degrees, 30 degrees, 45 degrees, and 50 degrees. The ULF wave foreshocks develop upstream of all of them. The wavelength and the amplitude of the upstream waves exhibit a complex dependence on the shock's MA and theta BN. The wavelength positively correlates with both parameters, with the dependence on theta BN being much stronger. The amplitude of the ULF waves is proportional to the product of the reflected beam velocity and density, which also depend on MA and theta BN. The interaction of the ULF waves with the shock causes large-scale (several tens of upstream ion inertial lengths) shock rippling. The properties of the shock ripples are related to the ULF wave properties, namely their wavelength and amplitude. In turn, the ripples have a large impact on the ULF wave transmission across the shock because they change local shock properties (theta BN, strength), so that different sections of the same ULF wavefront encounter shock with different characteristics. Downstream fluctuations do not resemble the upstream waves in terms the wavefront extension, orientation or their wavelength. However, some features are conserved in the Fourier spectra of downstream compressive waves that present a bump or flattening at wavelengths approximately corresponding to those of the upstream ULF waves. In the transverse downstream spectra, these features are weaker.Peer reviewe
- …