974 research outputs found
The influence of calibration curve construction and composition on the accuracy and precision of radiocarbon wiggle-matching of tree rings, illustrated by Southern Hemisphere atmospheric data sets from ad 1500–1950
This research investigates two factors influencing the ability of tree-ring data to provide accurate 14C calibration information: the fitness and rigor of the statistical model used to combine the data into a curve; and the accuracy, precision and reproducibility of the component 14C data sets. It presents a new Bayesian spline method for calibration curve construction and tests it on extant and new Southern Hemisphere (SH) data sets (also examining their dendrochronology and pretreatment) for the post-Little Ice Age (LIA) interval AD 1500–1950. The new method of construction allows calculation of component data offsets, permitting identification of laboratory and geographic biases. Application of the new method to the 10 suitable SH 14C data sets suggests that individual offset ranges for component data sets appear to be in the region of ± 10 yr. Data sets with individual offsets larger than this need to be carefully assessed before selection for calibration purposes. We identify a potential geographical offset associated with the Southern Ocean (high latitude) Campbell Island data. We test the new methodology for wiggle-matching short tree-ring sequences and use an OxCal simulation to assess the likely precision obtainable by wiggle-matching in the post-LIA interval
Objective classification of fabric pilling based on the two-dimensional discrete wavelet transform
A number of methods for automated objective ratings of fabric pilling based on image analysis are described in the literature. The periodic structure of fabrics makes them suitable candidates for frequency domain analysis. We propose a new method of frequency domain analysis based on the two-dimensional discrete wavelet transform to objectively measure pilling intensity in sample images. We present a preliminary evaluation of the proposed method based on analysis of two series of standard pilling evaluation test images. The initial results suggest that the proposed method is feasible, and that the ability of the method to discriminate between levels of pilling intensity depends on the wavelet analysis scale being closely matched to the fabric interyarn pitch. We also present a heuristic method for optimal selection of an analysis wavelet and associated analysis scale. <br /
Magnetar outbursts: an observational review
Transient outbursts from magnetars have shown to be a key property of their
emission, and one of the main way to discover new sources of this class. From
the discovery of the first transient event around 2003, we now count about a
dozen of outbursts, which increased the number of these strongly magnetic
neutron stars by a third in six years. Magnetar outbursts might involve their
multi-band emission resulting in an increased activity from radio to hard
X-ray, usually with a soft X-ray flux increasing by a factor of 10-1000 with
respect to the quiescent level. A connected X-ray spectral evolution is also
often observed, with a spectral softening during the outburst decay. The flux
decay times vary a lot from source to source, ranging from a few weeks to
several years, as also the decay law which can be exponential-like, a power-law
or even multiple power-laws can be required to model the flux decrease. We
review here on the latest observational results on the multi-band emission of
magnetars, and summarize one by one all the transient events which could be
studied to date from these sources.Comment: 34 pages, 6 figures. Chapter of the Springer Book ASSP 7395
"High-energy emission from pulsars and their systems", proceeding of the Sant
Cugat Forum on Astrophysics (12-16 April 2010). Review updated to January
201
Exploring morphological correlations among H2CO, 12CO, MSX and continuum mappings
There are relatively few H2CO mappings of large-area giant molecular cloud
(GMCs). H2CO absorption lines are good tracers for low-temperature molecular
clouds towards star formation regions. Thus, the aim of the study was to
identify H2CO distributions in ambient molecular clouds. We investigated
morphologic relations among 6-cm continuum brightness temperature (CBT) data
and H2CO (111-110; Nanshan 25-m radio telescope), 12CO (1--0; 1.2-m CfA
telescope) and midcourse space experiment (MSX) data, and considered the impact
of background components on foreground clouds. We report simultaneous 6-cm H2CO
absorption lines and H110\alpha radio recombination line observations and give
several large-area mappings at 4.8 GHz toward W49 (50'\times50'), W3
(70'\times90'), DR21/W75 (60'\times90') and NGC2024/NGC2023 (50'\times100')
GMCs. By superimposing H2CO and 12CO contours onto the MSX color map, we can
compare correlations. The resolution for H2CO, 12CO and MSX data was about 10',
8' and 18.3", respectively. Comparison of H2CO and 12CO contours, 8.28-\mu m
MSX colorscale and CBT data revealed great morphological correlation in the
large area, although there are some discrepancies between 12CO and H2CO peaks
in small areas. The NGC2024/NGC2023 GMC is a large area of HII regions with a
high CBT, but a H2CO cloud to the north is possible against the cosmic
microwave background. A statistical diagram shows that 85.21% of H2CO
absorption lines are distributed in the intensity range from -1.0 to 0 Jy and
the \Delta V range from 1.206 to 5 km/s.Comment: 18 pages, 22 figures, 5 tables. Accepted to be published in
Astrophysics and Space Scienc
Longitudinal Proton Polarization in the Cooler
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Tomato: a crop species amenable to improvement by cellular and molecular methods
Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures.
In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour
Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect
Magnetic Reconnection in Extreme Astrophysical Environments
Magnetic reconnection is a basic plasma process of dramatic rearrangement of
magnetic topology, often leading to a violent release of magnetic energy. It is
important in magnetic fusion and in space and solar physics --- areas that have
so far provided the context for most of reconnection research. Importantly,
these environments consist just of electrons and ions and the dissipated energy
always stays with the plasma. In contrast, in this paper I introduce a new
direction of research, motivated by several important problems in high-energy
astrophysics --- reconnection in high energy density (HED) radiative plasmas,
where radiation pressure and radiative cooling become dominant factors in the
pressure and energy balance. I identify the key processes distinguishing HED
reconnection: special-relativistic effects; radiative effects (radiative
cooling, radiation pressure, and Compton resistivity); and, at the most extreme
end, QED effects, including pair creation. I then discuss the main
astrophysical applications --- situations with magnetar-strength fields
(exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares
and magnetically-powered central engines and jets of GRBs. Here, magnetic
energy density is so high that its dissipation heats the plasma to MeV
temperatures. Electron-positron pairs are then copiously produced, making the
reconnection layer highly collisional and dressing it in a thick pair coat that
traps radiation. The pressure is dominated by radiation and pairs. Yet,
radiation diffusion across the layer may be faster than the global Alfv\'en
transit time; then, radiative cooling governs the thermodynamics and
reconnection becomes a radiative transfer problem, greatly affected by the
ultra-strong magnetic field. This overall picture is very different from our
traditional picture of reconnection and thus represents a new frontier in
reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic
reconnection). Article is based on an invited review talk at the
Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA;
February 8-12, 2010). 30 pages, no figure
A Measurement of the Decay Asymmetry Parameters in \Xi_{c}^{0}\to \X^{-}\pi^{+}
Using the CLEO II detector at the Cornell Electron Storage Ring we have
measured the decay asymmetry parameter in the decay . We find , using the world average value of
we obtain . The physically allowed range of a decay
asymmetry parameter is . Our result prefers a negative value:
is at the 90% CL. The central value occupies the
middle of the theoretically expected range but is not yet precise enough to
choose between models.Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
- …