25,971 research outputs found
High Energy Colliders
We consider the high energy advantages, disadvantages and luminosity
requirements of hadrons, leptons and photon-photon colliders. Technical
problems in obtaining increased energy in each type of machine are presented.
The machines relative size are also discussed.Comment: LaTeX, 27 pages, 8 figures (eps, ps). Submitted to the Proceedings of
the Princeton's 250th Anniversary Conference on Critical Problems in Physic
High Luminosity Muon Collider Design
Muon Colliders have unique technical and physics advantages and disadvantages
when compared with both hadrons and electron machines. They should be regarded
as complementary. Parameters are given of a 4 TeV high luminosity muon-muon
collider, and of a 0.5 TeV demonstration machine. We discuss the various
systems in such muon collider.Comment: LaTeX 5 pages 4 figure
Future Colliders
The high energy physics advantages, disadvantages and luminosity requirements
of hadrons, of leptons and photon-photon colliders are considered. Technical
arguments for increased energy in each type of machine are presented. Their
relative size, and the implications of size on cost are discussed.Comment: LaTeX, 10 pages, 10figure
6D Muon Ionization Cooling with an Inverse Cyclotron
A large admittance sector cyclotron filled with LiH wedges surrounded by
helium or hydrogen gas is explored. Muons are cooled as they spiral
adiabatically into a central swarm. As momentum approaches zero, the momentum
spread also approaches zero. Long bunch trains coalesce. Energy loss is used to
inject the muons into the outer rim of the cyclotron. The density of material
in the cyclotron decreases adiabatically with radius. The sector cyclotron
magnetic fields are transformed into an azimuthally symmetric magnetic bottle
in the center. Helium gas is used to inhibit muonium formation by positive
muons. Deuterium gas is used to allow captured negative muons to escape via the
muon catalyzed fusion process. The presence of ionized gas in the center may
automatically neutralize space charge. When a bunch train has coalesced into a
central swarm, it is ejected axially with an electric kicker pulse.Comment: Five pages. LaTeX, three postscript figure files. To appear in the
AIP Conference Proceedings for COOL05: International Workshop on Beam
Cooling, Galena, IL, 18-23 Sept. 200
A Pulsed Synchrotron for Muon Acceleration at a Neutrino Factory
A 4600 Hz pulsed synchrotron is considered as a means of accelerating cool
muons with superconducting RF cavities from 4 to 20 GeV/c for a neutrino
factory. Eddy current losses are held to less than a megawatt by the low
machine duty cycle plus 100 micron thick grain oriented silicon steel
laminations and 250 micron diameter copper wires. Combined function magnets
with 20 T/m gradients alternating within single magnets form the lattice. Muon
survival is 83%.Comment: 4 pages, 1 figures, LaTeX, 5th International Workshop on Neutrino
Factories and Superbeams (NuFact 03), 5-11 Jun 2003, New Yor
Rotational and vibrational effects in ion- dipole collisions
Rotational and vibration effects in ion dipole collisions demonstrated in color motion pictur
MONTE CARLO SIMULATIONS OF MUON PRODUCTION
Muon production requirements for a muon collider are presented. Production of
muons from pion decay is studied. Lithium lenses and solenoids are considered
for focussing pions from a target, and for matching the pions into a decay
channel. Pion decay channels of alternating quadrupoles and long solenoids are
compared. Monte Carlo simulations are presented for production of by protons over a wide energy range, and criteria for
choosing the best proton energy are discussed.Comment: Latex uses mu95.sty, 19 pages, 5 postscript figures. A postscript
file can be seen at URL http://www.cap.bnl.gov/~cap/mumu/important.html
Search for Publication
Ab Initio Liquid Hydrogen Muon Cooling Simulations with ELMS in ICOOL
This paper presents new theoretical results on the passage of muons through
liquid hydrogen which have been confirmed in a recent experiment. These are
used to demonstrate that muon bunches may be compressed by ionisation cooling
more effectively than suggested by previous calculations.
Muon cooling depends on the differential cross section for energy loss and
scattering of muons. We have calculated this cross section for liquid H2 from
first principles and atomic data, avoiding traditional assumptions. Thence, 2-D
probability maps of energy loss and scattering in mm-scale thicknesses are
derived by folding, and stored in a database. Large first-order correlations
between energy loss and scattering are found for H2, which are absent in other
simulations. This code is named ELMS, Energy Loss & Multiple Scattering. Single
particle trajectories may then be tracked by Monte Carlo sampling from this
database on a scale of 1 mm or less. This processor has been inserted into the
cooling code ICOOL. Significant improvements in 6-D muon cooling are predicted
compared with previous predictions based on GEANT. This is examined in various
geometries. The large correlation effect is found to have only a small effect
on cooling. The experimental scattering observed for liquid H2 in the MUSCAT
experiment has recently been reported to be in good agreement with the ELMS
prediction, but in poor agreement with GEANT simulation.Comment: 6 pages, 3 figure
Ising Field Theory on a Pseudosphere
We show how the symmetries of the Ising field theory on a pseudosphere can be
exploited to derive the form factors of the spin fields as well as the
non-linear differential equations satisfied by the corresponding two-point
correlation functions. The latter are studied in detail and, in particular, we
present a solution to the so-called connection problem relating two of the
singular points of the associated Painleve VI equation. A brief discussion of
the thermodynamic properties is also presented.Comment: 39 pages, 6 eps figures, uses harvma
- âŠ