6 research outputs found
A Postsynthetic Modification of II–VI Semiconductor Nanoparticles to Create Tb 3+
International audienceWe describe a novel method for creating luminescent lanthanide-containing nanoparticles in which the lanthanide cations are sensitized by the semiconductor nanoparticle's electronic excitation. In contrast to previous strategies, this new approach creates such materials by addition of external salt to a solution of fully formed nanoparticles. We demonstrate this postsynthetic modification for the lanthanide luminescence sensitization of two visible emitting lanthanides (Ln), Tb3+ and Eu3+ ions, through ZnS nanoparticles in which the cations were added postsynthetically as external Ln(NO3)3*xH2O salt to solutions of ZnS nanoparticles. The postsynthetically treated ZnS nanoparticle systems display Tb3+ and Eu3+ luminescence intensities that are comparable to those of doped Zn(Ln)S nanoparticles, which we reported previously (J. Phys. Chem. A, 2011, 115, 4031-4041). A comparison with the synthetically doped systems is used to contrast the spatial distribution of the lanthanide ions, bulk versus surface localized. The postsynthetic strategy described in this work is fundamentally different from the synthetic incorporation (doping) approach and offers a rapid and less synthetically demanding protocol for Tb3+:ZnS and Eu3+:ZnS luminophores, thereby facilitating their use in a broad range of applications
Lanthanide Sensitization in II−VI Semiconductor Materials: A Case Study with Terbium(III) and Europium(III) in Zinc Sulfide Nanoparticles
International audienceThis work explores the sensitization of luminescent lanthanide Tb3+ and Eu3+ cations by electronic structure of zinc sulfide (ZnS) semiconductor nanoparticles. Excitation spectra collected while monitoring the lanthanide emission bands reveal that the ZnS nanoparticles act as an antenna for the sensitization of Tb3+ and Eu3+. The mechanism of lanthanide ion luminescence sensitization is rationalized in terms of an energy and charge transfer between trap sites and is based on a semiempirical model, proposed by Dorenbos and co-workers (Dorenbos, P. J. Phys.: Condens Matter 2003, 15, 8417-8434; J. Lumin. 2004, 108, 301-305; J. Lumin. 2005, 111, 89-104. Dorenbos, P.; van der Kolk, E. Appl. Phys. Lett. 2006, 89, 061122-1-061122-3; Opt. Mater. 2008, 30, 1052-1057. Dorenbos, P. J. Alloys Compd. 2009, 488, 568-573; references 1-6.) to describe the energy level scheme. This model implies that the mechanisms of luminescence sensitization of Tb3+ and Eu3+ in ZnS nanoparticles are different; namely, Tb3+ acts as a hole trap, whereas Eu3+ acts as an electron trap. Further testing of this model is made by extending the studies from ZnS nanoparticles to other II-VI semiconductor materials; namely, CdSe, CdS, and ZnSe