2 research outputs found

    Birefringence measurement for validation of simulation of precision glass molding process

    No full text
    During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturing process. Material properties of glass, contact conductance and friction coefficient at the glass-mold interface are important parameters needed for simulations. In literature, these values are usually assumed without enough experimental justifications. Here, the viscoelastic thermo-rheological simple (TRS) behavior of glass is experimentally characterized by the four-point bending test. Contact conductance and friction coefficient at P-SK57™ glass and Pt-Ir coated WC mold interface are experimentally measured. A plano-convex lens of P-SK57™ glass is fabricated by PGM for two different cooling rates and whole field birefringence of the finished lens is measured by digital photoelasticity. The fabrication process is simulated using finite element method. The simulation is validated, for different stages of PGM process, by comparing the load acting on the mold and displacement of the molds. At the end of the process, the birefringence distribution is compared with the experimental data. A novel plotting scheme is developed for computing birefringence from FE simulation for any shape of lens

    Virtual process chain of sheet molding compound: Development, validation and perspectives

    No full text
    A virtual process chain for sheet molding compound (SMC) composites is established and validated by means of experimental investigations on a demonstrator structure. The flow in the compression molding step is simulated via a Coupled-Eulerian-Lagrangian approach using an anisotropic non-Newtonian fluid flow model. Evolution of the fiber orientation distribution (FOD) is described by Jeffery's equation. The predicted FOD is mapped to structural simulations employing a neutral data format. A mean-field anisotropic damage model is used to predict the damage evolution in the demonstrator. Simulated FOD at the end of the compression molding is validated by computer tomography. Structural simulations are validated by means of a cyclic four-point bending test on the demonstrator. The predicted results show increased accuracy with the experiments by transferring FOD data within the virtual process chain. Critical points of high damage concentrations leading to failure agree with the experimental observations
    corecore