2 research outputs found
Ex ante life cycle assessment of GaAs/Si nanowire-based tandem solar cells: a benchmark for industrialization
Purpose The goal of this study is to perform an ex-ante life cycle assessment (LCA) of the emerging gallium-arsenide nanowire tandem solar cells on silicon (GaAs/Si) and to provide a benchmark for the commercialization of the technology. The environmental impacts and energy payback time (EPBT) of the GaAs/Si modules are compared with those of the incumbent single-Si modules. Parameters and efficiencies most relevant to be optimized in order to commercialize the technology are identified and discussed. Methods Two production routes for GaAs/Si solar cells are being up-scaled: the growth of GaAs nanowires on a native substrate, peel-off, and transfer to a silicon substrate (transfer route) and the direct growth of GaAs nanowires on a silicon substrate with assistance of a silicon-dioxide (SiO2) nanotube template (direct growth route). Two ex-ante LCAs for the different manufacturing routes and an LCA for the incumbent single-Si technology were conducted. Environmental impacts of the GaAs/Si technology were assessed and compared with the incumbent. Various scenarios regarding sensitive parameters and processes were modeled-such as modeling several industrial scale tools, the energy consumption of sensitive processes, the number of substrate reuses, the frequency of re-polishing the wafer, and benchmarking the scale of improvement of major impact drivers. Results and discussion The analysis showed that, if expected process efficiencies are achieved, a 28% efficient GaAs/Si module performs 5 to 20% better (transfer route) and 20 to 30% better (direct growth route, except the ozone depletion impact) compared with an 18% efficient single-Si module, for all impact categories assessed-climate change, land use, acidification, ozone depletion, freshwater, marine, terrestrial ecotoxicity, eutrophication, human toxicity, and photochemical oxidation. Critical hotspots identified include the use of gold, trifluoromethane (CHF3), and a GaAs wafer. The EPBT of the GaAs/Si nanowire tandem module is in between 1.37 (expected process efficiencies achieved) and 1.9 years (worst case scenario), while the EPBT of the single-Si module is 1.84 years. Results can be considered as a benchmark for the successful commercialization of the technology. Conclusions If 28% efficient GaAs/Si nanowire tandem modules are developed, expected process efficiencies are achieved, and at least 100 reuses of the GaAs substrate (transfer route) are realized; then, the GaAs/Si modules perform better compared with an 18% efficient single-Si module for most impact categories assessed. Conclusions from the ex-ante LCA are conditional (if-then) and can be used as a benchmark, allowing to quantify the efficiencies that need to be achieved to commercialize the technology.Environmental Biolog