49 research outputs found
A glimpse into the structural properties of α-synuclein oligomers
Altres ajuts: acords transformatius de la UABα-Synuclein (αS) aggregation is the main neurological hallmark of a group of debilitating neurodegenerative disorders, collectively referred to as synucleinopathies, of which Parkinson's disease is the most prevalent. αS oligomers formed during the initial stages of aggregation are considered key pathogenic drivers of disease onset and progression, standing as privileged targets for therapeutic intervention and diagnosis. However, the structure of αS oligomers and the mechanistic basis of oligomer to fibril conversion are yet poorly understood, thereby precluding the rational formulation of strategies aimed at targeting oligomeric species. In this review, we delve into the recent advances in the structural and mechanistic characterization of αS oligomers. We also discuss how these advances are transforming our understanding of these elusive species and paving the way for oligomer-targeting therapeutics and diagnosis
Dissecting the contribution of Staphylococcus aureus α-phenol-soluble modulins to biofilm amyloid structure
The opportunistic pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently discovered phenol soluble modulins (PSMs) are small α-helical amphipathic peptides that act as the main molecular effectors of staphylococcal biofilm maturation, promoting the formation of an extracellular fibril structure with amyloid-like properties. Here, we combine computational, biophysical and in cell analysis to address the specific contribution of individual PSMs to biofilm structure. We demonstrate that despite their highly similar sequence and structure, contrary to what it was previously thought, not all PSMs participate in amyloid fibril formation. A balance of hydrophobic/hydrophilic forces and helical propensity seems to define the aggregation propensity of PSMs and control their assembly and function. This knowledge would allow to target specifically the amyloid properties of these peptides. In this way, we show that Epigallocatechin-3-gallate (EGCG), the principal polyphenol in green tea, prevents the assembly of amyloidogenic PSMs and disentangles their preformed amyloid fibrils
Proteïnes prions ajuden els bacteris a sobreviure
Els prions s'han associat tradicionalment amb greus malalties neurològiques, però aquestes proteïnes, en la seva forma funcional, també poden ser beneficioses pels organismes que els porten. Investigadors del Departament de BioquÃmica i Biologia Molecular de la UAB han identificat recentment el primer prió en un bacteri en un estudi realitzat amb tècniques d'anà lisi computacional. L'estudi del seu funcionament indica que pot tenir un efecte important en aquests organismes, perquè els ajuda a adaptar-se a entorns canviants, a millorar les seves caracterÃstiques i a persistir en les infeccions que causen. Aprofundir en el seu estudi podria obrir noves vies per lluitar contra les infeccions bacterianes.Los priones se han asociado tradicionalmente con graves enfermedades neurológicas, pero estas proteÃnas, en su forma funcional, también pueden ser beneficiosas para que los portan. Investigadores del Departamento de BioquÃmica y BiologÃa Molecular de la UAB han identificado recientemente el primer prión en una bacteria en un estudio realizado con técnicas de análisis computacional. El estudio de su funcionamiento indica que efecto importante en estos organismos, porque les ayuda a adaptarse a entorno cambiantes, mejorar sus caracterÃsticas y a persistir en las infecciones que causan. Pofundir en el estudio podrÃa abrir nuevas vÃas para luchar contra las infecciones bacterianas
Prion-like proteins : from computational approaches to proteome-wide analysis
Altres ajuts: ICREA-Academia 2020Prions are self-perpetuating proteins able to switch between a soluble state and an aggregated-and-transmissible conformation. These proteinaceous entities have been widely studied in yeast, where they are involved in hereditable phenotypic adaptations. The notion that such proteins could play functional roles and be positively selected by evolution has triggered the development of computational tools to identify prion-like proteins in different kingdoms of life. These algorithms have succeeded in screening multiple proteomes, allowing the identification of prion-like proteins in a diversity of unrelated organisms, evidencing that the prion phenomenon is well conserved among species. Interestingly enough, prion-like proteins are not only connected with the formation of functional membraneless protein-nucleic acid coacervates, but are also linked to human diseases. This review addresses state-of-the-art computational approaches to identify prion-like proteins, describes proteome-wide analysis efforts, discusses these unique proteins' functional role, and illustrates recently validated examples in different domains of life
Computational prediction of protein aggregation : advances in proteomics, conformation-specific algorithms and biotechnological applications
Protein aggregation is a widespread phenomenon that stems from the establishment of non-native intermolecular contacts resulting in protein precipitation. Despite its deleterious impact on fitness, protein aggregation is a generic property of polypeptide chains, indissociable from protein structure and function. Protein aggregation is behind the onset of neurodegenerative disorders and one of the serious obstacles in the production of protein-based therapeutics. The development of computational tools opened a new avenue to rationalize this phenomenon, enabling prediction of the aggregation propensity of individual proteins as well as proteome-wide analysis. These studies spotted aggregation as a major force driving protein evolution. Actual algorithms work on both protein sequences and structures, some of them accounting also for conformational fluctuations around the native state and the protein microenvironment. This toolbox allows to delineate conformation-specific routines to assist in the identification of aggregation-prone regions and to guide the optimization of more soluble and stable biotherapeutics. Here we review how the advent of predictive tools has change the way we think and address protein aggregation
PH-dependent aggregation in intrinsically disordered proteins is determined by charge and lipophilicity
Protein aggregation is associated with an increasing number of human disorders and premature aging. Moreover, it is a central concern in the manufacturing of recombinant proteins for biotechnological and therapeutic applications. Nevertheless, the unique architecture of protein aggregates is also exploited by nature for functional purposes, from bacteria to humans. The relevance of this process in health and disease has boosted the interest in understanding and controlling aggregation, with the concomitant development of a myriad of algorithms aimed to predict aggregation propensities. However, most of these programs are blind to the protein environment and, in particular, to the influence of the pH. Here, we developed an empirical equation to model the pH-dependent aggregation of intrinsically disordered proteins (IDPs) based on the assumption that both the global protein charge and lipophilicity depend on the solution pH. Upon its parametrization with a model IDP, this simple phenomenological approach showed unprecedented accuracy in predicting the dependence of the aggregation of both pathogenic and functional amyloidogenic IDPs on the pH. The algorithm might be useful for diverse applications, from large-scale analysis of IDPs aggregation properties to the design of novel reversible nanofibrillar materials
Exploring cryptic amyloidogenic regions in prion-like proteins from plants
Prion-like domains (PrLDs) are intrinsically disordered regions (IDRs) of low sequence complexity with a similar composition to yeast prion domains. PrLDs-containing proteins have been involved in different organisms' regulatory processes. Regions of moderate amyloid propensity within IDRs have been shown to assemble autonomously into amyloid fibrils. These sequences tend to be rich in polar amino acids and often escape from the detection of classical bioinformatics screenings that look for highly aggregation-prone hydrophobic sequence stretches. We defined them as cryptic amyloidogenic regions (CARs) and recently developed an integrated database that collects thousands of predicted CARs in IDRs. CARs seem to be evolutionary conserved among disordered regions because of their potential to stablish functional contacts with other biomolecules. Here we have focused on identifying and characterizing CARs in prion-like proteins (pCARs) from plants, a lineage that has been poorly studied in comparison with other prionomes. We confirmed the intrinsic amyloid potential for a selected pCAR from Arabidopsis thaliana and explored functional enrichments and compositional bias of pCARs in plant prion-like proteins
Direct interaction between a human digestive protease and the mucoadhesive poly(acrylic acid)
Carboxypeptidase A1 has been the subject of extensive research in the last 30 y and is one of the most widely studied zinc metalloenzymes. However, the three-dimensional structure of the human form of the enzyme is not yet available. This report describes the three-dimensional structure of human carboxypeptidase A1 (hCPA1) derived from crystals that belong to the tetragonal space group P43212 and diffract to 1.6 Ã… resolution. A description of the ternary complex hCPA1-Zn2+-poly(acrylic acid) is included as a model of the interaction of mucoadhesive polymers with proteases in the gastrointestinal tract. The direct mode of interaction between poly(acrylic acid) and the active site of the target protease was confirmed by in vitro inhibition assays. The structure was further analyzed in silico through the optimal docking-area method. The characterization of binding sites on the surface of hCPA1 and a comparison with other available carboxypeptidase structures provided further insights into the formation of multiprotein complexes and the activation mechanisms of carboxypeptidase zymogens. The high-resolution structure of hCPA1 provides an excellent template for the modelling of physiologically relevant carboxypeptidases and could also contribute to the design of specific agents for biomedical purposes
Exploring cryptic amyloidogenic regions in prion-like proteins from plants
Prion-like domains (PrLDs) are intrinsically disordered regions (IDRs) of low sequence complexity with a similar composition to yeast prion domains. PrLDs-containing proteins have been involved in different organisms’ regulatory processes. Regions of moderate amyloid propensity within IDRs have been shown to assemble autonomously into amyloid fibrils. These sequences tend to be rich in polar amino acids and often escape from the detection of classical bioinformatics screenings that look for highly aggregation-prone hydrophobic sequence stretches. We defined them as cryptic amyloidogenic regions (CARs) and recently developed an integrated database that collects thousands of predicted CARs in IDRs. CARs seem to be evolutionary conserved among disordered regions because of their potential to stablish functional contacts with other biomolecules. Here we have focused on identifying and characterizing CARs in prion-like proteins (pCARs) from plants, a lineage that has been poorly studied in comparison with other prionomes. We confirmed the intrinsic amyloid potential for a selected pCAR from Arabidopsis thaliana and explored functional enrichments and compositional bias of pCARs in plant prion-like proteins
The disordered C-terminus of yeast hsf1 contains a cryptic low-complexity amyloidogenic region
Response mechanisms to external stress rely on networks of proteins able to activate specific signaling pathways to ensure the maintenance of cell proteostasis. Many of the proteins mediating this kind of response contain intrinsically disordered regions, which lack a defined structure, but still are able to interact with a wide range of clients that modulate the protein function. Some of these interactions are mediated by specific short sequences embedded in the longer disordered regions. Because the physicochemical properties that promote functional and abnormal interactions are similar, it has been shown that, in globular proteins, aggregation-prone and binding regions tend to overlap. It could be that the same principle applies for disordered protein regions. In this context, we show here that a predicted low-complexity interacting region in the disordered C-terminus of the stress response master regulator heat shock factor 1 (Hsf1) protein corresponds to a cryptic amyloid region able to self-assemble into fibrillary structures resembling those found in neurodegenerative disorders