4 research outputs found

    Inhibition of Human Immunodeficiency Virus Type 1 Replication in Human Cells by Debio-025, a Novel Cyclophilin Binding Agent▿ †

    No full text
    Debio-025 is a synthetic cyclosporine with no immunosuppressive capacity but a high inhibitory potency against cyclophilin A (CypA)-associated cis-trans prolyl isomerase (PPIase) activity. A lack of immunosuppressive effects compared to that of cyclosporine was demonstrated both in vitro and in vivo. For three cyclosporines, the inhibitory potential against PPIase activity was quantitatively correlated with that against human immunodeficiency virus type 1 (HIV-1) replication. Debio-025 selectively inhibited the replication of HIV-1 in a CD4+ cell line and in peripheral blood mononuclear cells: potent activity was demonstrated against clinical isolates of various HIV-1 subtypes, including isolates with multidrug resistance to reverse transcriptase and protease inhibitors. Simian immunodeficiency virus and HIV-2 strains were generally resistant to inhibition by Debio-025; however, some notable exceptions of sensitive HIV-2 clinical isolates were detected. In two-drug combination studies, additive inhibitory effects were found between Debio-025 and 19 clinically used drugs of different classes. Clinical HIV-1 isolates that are naturally resistant to Debio-025 and that do not depend on CypA for infection were identified. Comparison of the amino acid sequences of the CypA binding domain of the capsid (CA) protein from Debio-025-sensitive and -resistant HIV-1 isolates indicated that resistance was mostly associated with an H87Q/P exchange. Mechanistically, cyclosporines competitively inhibit the binding of CypA to the HIV-1 CA protein, which is an essential interaction required for early steps in HIV-1 replication. By real-time PCR we demonstrated that early reverse transcription is reduced in the presence of Debio-025 and that late reverse transcription is almost completely blocked. Thus, Debio-025 seems to interfere with the function of CypA during the progression/completion of HIV-1 reverse transcription

    In Vitro Preclinical Testing of Nonoxynol-9 as Potential Anti-Human Immunodeficiency Virus Microbicide: a Retrospective Analysis of Results from Five Laboratories

    No full text
    The first product to be clinically evaluated as a microbicide contained the nonionic surfactant nonoxynol-9 (nonylphenoxypolyethoxyethanol; N-9). Many laboratories have used N-9 as a control compound for microbicide assays. However, no published comparisons of the results among laboratories or attempts to establish standardized protocols for preclinical testing of microbicides have been performed. In this study, we compared results from 127 N-9 toxicity and 72 efficacy assays that were generated in five different laboratories over the last six years and were performed with 14 different cell lines or tissues. Intra-assay reproducibility was measured at two-, three-, and fivefold differences using standard deviations. Interassay reproducibility was assessed using general linear models, and interaction between variables was studied using step-wise regression. The intra-assay reproducibility within the same N-9 concentration, cell type, assay duration, and laboratory was consistent at the twofold level of standard deviations. For interassay reproducibility, cell line, duration of assay, and N-9 concentration were all significant sources of variability (P < 0.01). Half-maximal toxicity concentrations for N-9 were similar between laboratories for assays of similar exposure durations, but these similarities decreased with lower test concentrations of N-9. Results for both long (>24 h) and short (<2 h) exposures of cells to N-9 showed variability, while assays with 4 to 8 h of N-9 exposure gave results that were not significantly different. This is the first analysis to compare preclinical N-9 toxicity levels that were obtained by different laboratories using various protocols. This comparative work can be used to develop standardized microbicide testing protocols that will help advance potential microbicides to clinical trials
    corecore