18 research outputs found
The impact of alkyl- and alkoxy-functionalization on the responsive behaviour of metal-organic frameworks: from conventional to frustrated flexibility
The investigation of functional materials, which can change their physical properties depending on external triggers is of ongoing interest for various fields of materials research. Metal-organic frameworks (MOFs) are porous coordination polymers constructed of inorganic building units (e.g., metal-ions, metal-oxo-clusters) joined by organic building units (e.g., multidentate carboxylates), also called linkers. A particular subclass of MOFs are flexible MOFs, which undergo structural changes as a function of external stimuli. This behaviour arises from a delicate balance between enthalpic (e.g., dispersion interactions) and entropic (e.g., vibrational motions) contributions, which can be modified and controlled by the introduction of additional functional groups at the organic building unit of the framework.
In this work, alkyl-, alkoxy-, and methoxy-alkoxy group functionalization of the organic building unit was utilized to modulate and study the influence of sidechain length and polarity on the structural responsivity of two fundamentally different MOF platforms. Of these, one is intrinsically flexible (DMOF-1), while the other one is structurally rigid (MOF-5).
For the DMOF-1-based materials, it has been shown in the past that the implementation of alkoxy groups induces a guest- and temperature-depending switching between contracted and expanded phases. In this work, a series of purely alkyl-functionalized DMOF-1 derivatives was studied and structurally characterized in great detail by means of single crystal and powder X-ray diffraction. Furthermore, their sorption behaviour towards N2, CO2 and C3 and C4 hydrocarbons was investigated and subsequently compared to their alkoxy counterparts, which revealed significant differences that strongly relate to the different polarities of the functional groups. Particular highlights are path-depending multi-step CO2 sorption behaviours and an interesting propane/propylene gating behaviour with potential for an application in the separation of the gases, both phenomena were studied by in-situ X-ray diffraction techniques. Upon thermal treatment, the new alkyl functionalized DMOF-1 derivatives exhibit a significantly softer behaviour than their alkoxy counterparts indicating a much flatter free energy landscape for these materials in connection with weaker intra-framework interactions of the less polar alkyl groups.
In the second part of this thesis, the concept of frustrated flexibility of MOFs is introduced. Due to the incompatibility of a rigid, non-responsive MOF structure type (here MOF-5) with intra-framework dispersion forces demanding a densification of the structure a new type of responsive behaviour evolves. Controlled by chemical functionalization of the organic linkers with dispersion energy donating (DED) alkoxy groups, a series of materials is obtained, which reversibly switch between a cubic crystalline and either a non-crystalline or a rhombohedral phase. These transitions are either driven enthalpically through guest adsorption/desorption or by vibrational entropy at elevated temperatures. Importantly, frustratedly flexible behaviour is shown to be tuneable by adjusting the length and polarity of the DED groups.
Overall, the results presented herein demonstrate that linker functionalization is a powerful tool to modulate the free energy landscape of MOF materials. For intrinsically flexible MOFs this approach allows targeted fine-tuning of their flexible behaviour, while for rigid MOFs it allows for the generation of completely new and exotic responsive behaviour
Entropy driven disorder–order transition of a metal–organic framework with frustrated flexibility
Flexible metal–organic frameworks (MOFs), showing a reversible phase change behavior in response to guest adsorption or temperature, provide unique opportunities for molecular separation or energy storage applications. Herein, we investigate the complex guest- and temperature-responsive behavior of a functionalized MOF-5 derivative. The material is characterized by a geometrically rigid network structure that is decorated with dispersion energy donating hexyloxy substituents. Distinguished by the phenomenon of frustrated flexibility, the functionalized MOF-5 derivative switches between a highly crystalline, cubic structure and a semi-crystalline, aperiodically distorted structure depending on guest adsorption and temperature. Via a combination of several variable temperature global and local structure techniques (x-ray diffraction, x-ray total scattering, and Fourier-transform IR spectroscopy), detailed insights into the complementary disorder–order transitions of the framework backbone and the dangling hexyloxy substituents are provided. Our results set the stage for the discovery of new responsive MOFs exhibiting a more complex phase change behavior interfacing periodic and aperiodic structural changes
Breathing porous liquids based on responsive metal-organic framework particles
Responsive metal-organic frameworks (MOFs) that display sigmoidal gas sorption isotherms triggered by discrete gas pressure-induced structural transformations are highly promising materials for energy related applications. However, their lack of transportability via continuous flow hinders their application in systems and designs that rely on liquid agents. We herein present examples of responsive liquid systems which exhibit a breathing behaviour and show step-shaped gas sorption isotherms, akin to the distinct oxygen saturation curve of haemoglobin in blood. Dispersions of flexible MOF nanocrystals in a size-excluded silicone oil form stable porous liquids exhibiting gated uptake for CO2, propane and propylene, as characterized by sigmoidal gas sorption isotherms with distinct transition steps. In situ X-ray diffraction studies show that the sigmoidal gas sorption curve is caused by a narrow pore to large pore phase transformation of the flexible MOF nanocrystals, which respond to gas pressure despite being dispersed in silicone oil. Given the established flexible nature and tunability of a range of MOFs, these results herald the advent of breathing porous liquids whose sorption properties can be tuned rationally for a variety of technological applications
Photochemical approach to the cyclohepta[b]indole scaffold by annulative two-carbon ring-expansion
We report on the implementation of the concept of a photochemically elicited two-carbon homologation of a π-donor–π-acceptor substituted chromophore by triple-bond insertion. Implementing a phenyl connector between the slide-in module and the chromophore enabled the synthesis of cylohepta[b]indole-type building blocks by a metal-free annulative one-pot two-carbon ring expansion of the five-membered chromophore. Post-irradiative structural elaboration provided founding members of the indolo[2,3-d]tropone family of compounds. Control experiments in combination with computational chemistry on this multibond reorganization process founded the basis for a mechanistic hypothesis
Tuning the High-Pressure Phase Behaviour of Highly Compressible Zeolitic Imidazolate Frameworks: From Discontinuous to Continuous Pore Closure by Linker Substitution
The high‐pressure behaviour of flexible zeolitic imidazolate frameworks (ZIFs) of the ZIF‐62 family with the chemical composition M(im)(2−x )(bim)(x) is presented (M(2+)=Zn(2+), Co(2+); im(−)=imidazolate; bim(−)=benzimidazolate, 0.02≤x≤0.37). High‐pressure powder X‐ray diffraction shows that the materials contract reversibly from an open pore ( op ) to a closed pore ( cp ) phase under a hydrostatic pressure of up to 4000 bar. Sequentially increasing the bim(−) fraction (x) reinforces the framework, leading to an increased threshold pressure for the op ‐to‐ cp phase transition, while the total volume contraction across the transition decreases. Most importantly, the typical discontinuous op ‐to‐ cp transition (first order) changes to an unusual continuous transition (second order) for x≥0.35. This allows finetuning of the void volume and the pore size of the material continuously by adjusting the pressure, thus opening new possibilities for MOFs in pressure‐switchable devices, membranes, and actuators
Tuning the high-pressure phase behaviour of highly compressible zeolitic imidazolate frameworks: from discontinuous to continuous pore closure by linker substitution
The high-pressure behaviour of flexible zeolitic imidazolate frameworks (ZIFs) of the ZIF-62 family with the chemical composition M(im)2−x(bim)x is presented (M2+=Zn2+, Co2+; im−=imidazolate; bim−=benzimidazolate, 0.02≤x≤0.37). High-pressure powder X-ray diffraction shows that the materials contract reversibly from an open pore (op) to a closed pore (cp) phase under a hydrostatic pressure of up to 4000 bar. Sequentially increasing the bim− fraction (x) reinforces the framework, leading to an increased threshold pressure for the op-to-cp phase transition, while the total volume contraction across the transition decreases. Most importantly, the typical discontinuous op-to-cp transition (first order) changes to an unusual continuous transition (second order) for x≥0.35. This allows finetuning of the void volume and the pore size of the material continuously by adjusting the pressure, thus opening new possibilities for MOFs in pressure-switchable devices, membranes, and actuators
Frustrated flexibility in metal-organic frameworks
Stimuli-responsive flexible metal-organic frameworks (MOFs) remain at the forefront of porous materials research due to their enormous potential for various technological applications. Here, we introduce the concept of frustrated flexibility in MOFs, which arises from an incompatibility of intra-framework dispersion forces with the geometrical constraints of the inorganic building units. Controlled by appropriate linker functionalization with dispersion energy donating alkoxy groups, this approach results in a series of MOFs exhibiting a new type of guest- and temperature-responsive structural flexibility characterized by reversible loss and recovery of crystalline order under full retention of framework connectivity and topology. The stimuli-dependent phase change of the frustrated MOFs involves non-correlated deformations of their inorganic building unit, as probed by a combination of global and local structure techniques together with computer simulations. Frustrated flexibility may be a common phenomenon in MOF structures, which are commonly regarded as rigid, and thus may be of crucial importance for the performance of these materials in various applications
Entropy driven disorder–order transition of a metal–organic framework with frustrated flexibility
Flexible metal–organic frameworks (MOFs), showing a reversible phase change behavior in response to guest adsorption or temperature, provide unique opportunities for molecular separation or energy storage applications. Herein, we investigate the complex guest- and temperature-responsive behavior of a functionalized MOF-5 derivative. The material is characterized by a geometrically rigid network structure that is decorated with dispersion energy donating hexyloxy substituents. Distinguished by the phenomenon of frustrated flexibility, the functionalized MOF-5 derivative switches between a highly crystalline, cubic structure and a semi-crystalline, aperiodically distorted structure depending on guest adsorption and temperature. Via a combination of several variable temperature global and local structure techniques (x-ray diffraction, x-ray total scattering, and Fourier-transform IR spectroscopy), detailed insights into the complementary disorder–order transitions of the framework backbone and the dangling hexyloxy substituents are provided. Our results set the stage for the discovery of new responsive MOFs exhibiting a more complex phase change behavior interfacing periodic and aperiodic structural changes
Breathing porous liquids based on responsive metal-organic framework particles
Responsive metal-organic frameworks (MOFs) that display sigmoidal isotherms triggered by discrete gas pressure-induced structural transformations are highly promising materials for energy related applications. However, their lack of transportability via continuous flow hinders their application in systems and designs that rely on liquid agents. We herein present examples of responsive liquid systems which exhibit a breathing behaviour and show step-shaped gas sorption isotherms, akin to the distinct oxygen saturation curve of haemoglobin in blood. Dispersions of flexible MOF nanocrystals in a size-excluded silicone oil form stable porous liquids exhibiting gated uptake for CO2, propane and propylene, as characterized by sigmoidal gas sorption isotherms with distinct transition steps. In situ X-ray diffraction studies show that the sigmoidal gas sorption curve is caused by a narrow pore to large pore phase transformation to the flexible MOF nanocrystals, which respond to gas pressure despite being dispersed in silicone oil. Given the established flexible nature and tunability of a range of MOFs, these results herald the advent of breathing porous liquids whose sorption properties can be tuned rationally for a variety of technological applications
Modulating Liquid–Liquid Transitions and Glass Formation in Zeolitic Imidazolate Frameworks by Decoration with Electron-Withdrawing Cyano Groups
The liquid phase of metal–organic frameworks (MOFs) is key for the preparation of melt-quenched bulk glasses as well as the shaping of these materials for various applications; however, only very few MOFs can be melted and transformed into stable glasses. Here, the solvothermal and mechanochemical preparation of a new series of functionalized derivatives of ZIF-4 (Zn(im)2, where im– = imidazolate and ZIF = zeolitic imidazolate framework) containing the cyano-functionalized imidazolate linkers CNim– (4-cynanoimidazolate) and dCNim– (4,5-dicyanoimidazolate) is reported. The strongly electron-withdrawing nature of the CN groups facilitates low-temperature melting of the materials (below 310 °C for some derivatives) and the formation of microporous ZIF glasses with remarkably low glass-transition temperatures (down to only about 250 °C) and strong resistance against recrystallization. Besides conventional ZIF-4, the CN-functionalized ZIFs are so far the only MOFs to show an exothermic framework collapse to a low-density liquid phase and a subsequent transition to a high-density liquid phase. By systematic adjustment of the fraction of cyano-functionalized linkers in the ZIFs, we derive fundamental insights into the thermodynamics of the unique polyamorphic nature of these glass formers as well as further design rules for the porosity of the ZIF glasses and the viscosity of their corresponding liquids. The results provide new insights into the unusual phenomenon of liquid–liquid transitions as well as a guide for the chemical diversification of meltable MOFs, likely with implications beyond the archetypal ZIF glass formers