14 research outputs found

    Renal amyloid‐A amyloidosis in cats: Characterization of proteinuria and biomarker discovery, and associations with kidney histology

    Get PDF
    BackgroundAmyloid A (AA) amyloidosis is a protein misfolding disease arising from serum amyloid A (SAA). Systemic AA amyloidosis recently was shown to have a high prevalence in shelter cats in Italy and was associated with azotemia and proteinuria.ObjectivesInvestigate urine protein profiles and diagnostic biomarkers in cats with renal AA amyloidosis.AnimalsTwenty‐nine shelter cats.MethodsCase‐control study. Cats with renal proteinuria that died or were euthanized between 2018 and 2021 with available necropsy kidney, liver and spleen samples, and with surplus urine collected within 30 days before death, were included. Histology was used to characterize renal damage and amyloid amount and distribution; immunohistochemistry was used to confirm AA amyloidosis. Urine protein‐to‐creatinine (UPC) and urine amyloid A‐to‐creatinine (UAAC) ratios were calculated, and sodium dodecyl sulfate‐agarose gel electrophoresis (SDS‐AGE) and liquid chromatography‐mass spectrometry (LC‐MS) of proteins were performed.ResultsTwenty‐nine cats were included. Nineteen had AA amyloidosis with renal involvement. Cats with AA amyloidosis had a higher UPC (median, 3.9; range, 0.6‐12.7 vs 1.5; 0.6‐3.1; P = .03) and UAAC ratios (median, 7.18 × 103^{−3}; range, 23 × 103^{−3}‐21.29 × 103^{−3} vs 1.26 × 103^{−3}; 0.21 × 103^{−3}‐6.33 × 103^{−3}; P = .04) than unaffected cats. The SDS‐AGE identified mixed‐type proteinuria in 89.4% of cats with AA amyloidosis and in 55.6% without AA amyloidosis (P = .57). The LC‐MS identified 63 potential biomarkers associated with AA amyloidosis (P < .05). Among these, urine apolipoprotein C‐III was higher in cats with AA amyloidosis (median, 1.38 × 107^{7}; range, 1.85 × 105^{5}‐5.29 × 107^{7} vs 1.76 × 106^{6}; 0.0 × 100^{0}‐1.38 × 107^{7}; P = .01). In the kidney, AA‐amyloidosis was associated with glomerulosclerosis (P = .02) and interstitial fibrosis (P = .05).Conclusions and Clinical ImportanceRenal AA amyloidosis is associated with kidney lesions, increased proteinuria and increased urine excretion of SAA in shelter cats. Additional studies are needed to characterize the role of lipid transport proteins in the urine of affected cats

    Cryo-EM structure of ex vivo fibrils associated with extreme AA amyloidosis prevalence in a cat shelter

    Full text link
    AA amyloidosis is a systemic disease characterized by deposition of misfolded serum amyloid A protein (SAA) into cross-β amyloid in multiple organs in humans and animals. AA amyloidosis occurs at high SAA serum levels during chronic inflammation. Prion-like transmission was reported as possible cause of extreme AA amyloidosis prevalence in captive animals, e.g. 70% in cheetah and 57–73% in domestic short hair (DSH) cats kept in zoos and shelters, respectively. Herein, we present the 3.3 Å cryo-EM structure of AA amyloid extracted post-mortem from the kidney of a DSH cat with renal failure, deceased in a shelter with extreme disease prevalence. The structure reveals a cross-β architecture assembled from two 76-residue long proto-filaments. Despite >70% sequence homology to mouse and human SAA, the cat SAA variant adopts a distinct amyloid fold. Inclusion of an eight-residue insert unique to feline SAA contributes to increased amyloid stability. The presented feline AA amyloid structure is fully compatible with the 99% identical amino acid sequence of amyloid fragments of captive cheetah

    Cryo-EM structure of ex vivo fibrils associated with extreme AA amyloidosis prevalence in a cat shelter.

    Get PDF
    AA amyloidosis is a systemic disease characterized by deposition of misfolded serum amyloid A protein (SAA) into cross-β amyloid in multiple organs in humans and animals. AA amyloidosis occurs at high SAA serum levels during chronic inflammation. Prion-like transmission was reported as possible cause of extreme AA amyloidosis prevalence in captive animals, e.g. 70% in cheetah and 57-73% in domestic short hair (DSH) cats kept in zoos and shelters, respectively. Herein, we present the 3.3 Å cryo-EM structure of AA amyloid extracted post-mortem from the kidney of a DSH cat with renal failure, deceased in a shelter with extreme disease prevalence. The structure reveals a cross-β architecture assembled from two 76-residue long proto-filaments. Despite >70% sequence homology to mouse and human SAA, the cat SAA variant adopts a distinct amyloid fold. Inclusion of an eight-residue insert unique to feline SAA contributes to increased amyloid stability. The presented feline AA amyloid structure is fully compatible with the 99% identical amino acid sequence of amyloid fragments of captive cheetah

    Serum insulin‐like growth factor‐1 concentrations in healthy cats before and after weight gain and weight loss

    Get PDF
    Background: Measurement of serum concentrations of insulin-like growth factor (IGF)-1 is used to diagnose acromegaly in cats. Hypothesis: Changes of body weight do not affect serum concentrations of IGF-1 in cats. Animals: Ten healthy purpose-bred cats. Methods: Prospective study. In lean cats, food availability was stepwise increased during the first week and given ad libitum for a total of 40 weeks to increase their body weight. From week 41 to week 60, food access was limited to reach a weight loss of 1% to 2% each week. Measurement of IGF-1 was performed at week 0, 16, 40, and 60. Insulin-like growth factor-1 was measured by radioimmunoassay. Body weight and IGF-1 were compared among the 4 time points. Results: Body weight increased by 44% from week 0 (4.5 ± 0.4 kg) to week 40 (6.5 ± 1.2 kg) (P < .001) and decreased by 25% from week 40 to week 60 (4.9 ± 0.7 kg) (P < .001). Serum IGF-1 concentrations did not differ during the study period (week 0, 16, 40, 60: 500 ± 188, 479 ± 247, 470 ± 184, 435 ± 154 ng/mL, respectively; P = .38). Correlations with body weight were not observed. Conclusions and clinical importance: Insulin-like growth factor-1 might not be influenced by changes of body weight in healthy cats, possibly suggesting that the latter is unimportant when interpreting IGF-1 results in this species

    SARS-CoV-2 infection and antibody response in a symptomatic cat from Italy with intestinal B-cell lymphoma

    Full text link
    Since the coronavirus disease (COVID-19) pandemic was first identified in early 2020, rare cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in pet cats have been reported worldwide. Some reports of cats with SARS-CoV-2 showed self-limiting respiratory or gastrointestinal disease after suspected human-to-feline transmission via close contact with humans with SARS-CoV-2. In the present study, we investigated a cat with SARS-CoV-2 that was presented to a private animal clinic in Northern Italy in May 2020 in a weak clinical condition due to an underlying intestinal B-cell lymphoma. The cat developed signs of respiratory tract disease, including a sneeze, a cough and ocular discharge, three days after an oropharyngeal swab tested positive for SARS-CoV-2 viral RNA using two real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assays for the envelope (E) and RNA-dependent RNA polymerase (RdRp) gene. Thus, SARS-CoV-2 viral RNA was detectable prior to the onset of clinical signs. Five and six months after positive molecular results, the serological testing substantiated the presence of a SARS-CoV-2 infection in the cat with the detection of anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin (IgG) antibodies and neutralizing activity in a surrogate virus neutralization assay (sVNT). To the best of our knowledge, this extends the known duration of seropositivity of SARS-CoV-2 in a cat. Our study provides further evidence that cats are susceptible to SARS-CoV-2 under natural conditions and strengthens the assumption that comorbidities may play a role in the development of clinical disease

    Serum insulin‐like growth factor‐1 concentrations in healthy cats before and after weight gain and weight loss

    No full text
    Abstract Background Measurement of serum concentrations of insulin‐like growth factor (IGF)‐1 is used to diagnose acromegaly in cats. Hypothesis Changes of body weight do not affect serum concentrations of IGF‐1 in cats. Animals Ten healthy purpose‐bred cats. Methods Prospective study. In lean cats, food availability was stepwise increased during the first week and given ad libitum for a total of 40 weeks to increase their body weight. From week 41 to week 60, food access was limited to reach a weight loss of 1% to 2% each week. Measurement of IGF‐1 was performed at week 0, 16, 40, and 60. Insulin‐like growth factor‐1 was measured by radioimmunoassay. Body weight and IGF‐1 were compared among the 4 time points. Results Body weight increased by 44% from week 0 (4.5 ± 0.4 kg) to week 40 (6.5 ± 1.2 kg) (P < .001) and decreased by 25% from week 40 to week 60 (4.9 ± 0.7 kg) (P < .001). Serum IGF‐1 concentrations did not differ during the study period (week 0, 16, 40, 60: 500 ± 188, 479 ± 247, 470 ± 184, 435 ± 154 ng/mL, respectively; P = .38). Correlations with body weight were not observed. Conclusions and Clinical Importance Insulin‐like growth factor‐1 might not be influenced by changes of body weight in healthy cats, possibly suggesting that the latter is unimportant when interpreting IGF‐1 results in this species

    SARS-CoV-2 Infection and Antibody Response in a Symptomatic Cat from Italy with Intestinal B-Cell Lymphoma

    Get PDF
    Since the coronavirus disease (COVID-19) pandemic was first identified in early 2020, rare cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in pet cats have been reported worldwide. Some reports of cats with SARS-CoV-2 showed self-limiting respiratory or gastrointestinal disease after suspected human-to-feline transmission via close contact with humans with SARS-CoV-2. In the present study, we investigated a cat with SARS-CoV-2 that was presented to a private animal clinic in Northern Italy in May 2020 in a weak clinical condition due to an underlying intestinal B-cell lymphoma. The cat developed signs of respiratory tract disease, including a sneeze, a cough and ocular discharge, three days after an oropharyngeal swab tested positive for SARS-CoV-2 viral RNA using two real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assays for the envelope (E) and RNA-dependent RNA polymerase (RdRp) gene. Thus, SARS-CoV-2 viral RNA was detectable prior to the onset of clinical signs. Five and six months after positive molecular results, the serological testing substantiated the presence of a SARS-CoV-2 infection in the cat with the detection of anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin (IgG) antibodies and neutralizing activity in a surrogate virus neutralization assay (sVNT). To the best of our knowledge, this extends the known duration of seropositivity of SARS-CoV-2 in a cat. Our study provides further evidence that cats are susceptible to SARS-CoV-2 under natural conditions and strengthens the assumption that comorbidities may play a role in the development of clinical disease

    SARS-CoV-2 Infection and Antibody Response in a Symptomatic Cat from Italy with Intestinal B-Cell Lymphoma

    No full text
    Since the coronavirus disease (COVID-19) pandemic was first identified in early 2020, rare cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in pet cats have been reported worldwide. Some reports of cats with SARS-CoV-2 showed self-limiting respiratory or gastrointestinal disease after suspected human-to-feline transmission via close contact with humans with SARS-CoV-2. In the present study, we investigated a cat with SARS-CoV-2 that was presented to a private animal clinic in Northern Italy in May 2020 in a weak clinical condition due to an underlying intestinal B-cell lymphoma. The cat developed signs of respiratory tract disease, including a sneeze, a cough and ocular discharge, three days after an oropharyngeal swab tested positive for SARS-CoV-2 viral RNA using two real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assays for the envelope (E) and RNA-dependent RNA polymerase (RdRp) gene. Thus, SARS-CoV-2 viral RNA was detectable prior to the onset of clinical signs. Five and six months after positive molecular results, the serological testing substantiated the presence of a SARS-CoV-2 infection in the cat with the detection of anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin (IgG) antibodies and neutralizing activity in a surrogate virus neutralization assay (sVNT). To the best of our knowledge, this extends the known duration of seropositivity of SARS-CoV-2 in a cat. Our study provides further evidence that cats are susceptible to SARS-CoV-2 under natural conditions and strengthens the assumption that comorbidities may play a role in the development of clinical disease

    SARS-CoV-2 Infection in Dogs and Cats from Southern Germany and Northern Italy during the First Wave of the COVID-19 Pandemic

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people globally since its first detection in late 2019. Besides humans, cats and, to some extent, dogs were shown to be susceptible to SARS-CoV-2, highlighting the need for surveillance in a One Health context. Seven veterinary clinics from regions with high incidences of coronavirus disease (COVID-19) were recruited during the early pandemic (March to July 2020) for the screening of patients. A total of 2257 oropharyngeal and nasal swab specimen from 877 dogs and 260 cats (including 18 animals from COVID-19-affected households and 92 animals with signs of respiratory disease) were analyzed for the presence of SARS-CoV-2 RNA using reverse transcriptase real-time polymerase chain reaction (RT-qPCR) targeting the viral envelope (E) and RNA dependent RNA polymerase (RdRp) genes. One oropharyngeal swab from an Italian cat, living in a COVID-19-affected household in Piedmont, tested positive in RT-qPCR (1/260; 0.38%, 95% CI: 0.01-2.1%), and SARS-CoV-2 infection of the animal was serologically confirmed six months later. One oropharyngeal swab from a dog was potentially positive (1/877; 0.1%, 95% CI: 0.002-0.63%), but the result was not confirmed in a reference laboratory. Analyses of convenience sera from 118 animals identified one dog (1/94; 1.1%; 95% CI: 0.02-5.7%) from Lombardy, but no cats (0/24), as positive for anti-SARS-CoV-2 receptor binding domain (RBD) antibodies and neutralizing activity. These findings support the hypothesis that the prevalence of SARS-CoV-2 infection in pet cat and dog populations, and hence, the risk of zoonotic transmission to veterinary staff, was low during the first wave of the pandemic, even in hotspot areas

    SARS-CoV-2 Infection in dogs and cats from Southern Germany and Northern Italy during the first wave of the COVID-19 pandemic

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people globally since its first detection in late 2019. Besides humans, cats and, to some extent, dogs were shown to be susceptible to SARS-CoV-2, highlighting the need for surveillance in a One Health context. Seven veterinary clinics from regions with high incidences of coronavirus disease (COVID-19) were recruited during the early pandemic (March to July 2020) for the screening of patients. A total of 2257 oropharyngeal and nasal swab specimen from 877 dogs and 260 cats (including 18 animals from COVID-19-affected households and 92 animals with signs of respiratory disease) were analyzed for the presence of SARS-CoV-2 RNA using reverse transcriptase real-time polymerase chain reaction (RT-qPCR) targeting the viral envelope (E) and RNA dependent RNA polymerase (RdRp) genes. One oropharyngeal swab from an Italian cat, living in a COVID-19-affected household in Piedmont, tested positive in RT-qPCR (1/260; 0.38%, 95% CI: 0.01-2.1%), and SARS-CoV-2 infection of the animal was serologically confirmed six months later. One oropharyngeal swab from a dog was potentially positive (1/877; 0.1%, 95% CI: 0.002-0.63%), but the result was not confirmed in a reference laboratory. Analyses of convenience sera from 118 animals identified one dog (1/94; 1.1%; 95% CI: 0.02-5.7%) from Lombardy, but no cats (0/24), as positive for anti-SARS-CoV-2 receptor binding domain (RBD) antibodies and neutralizing activity. These findings support the hypothesis that the prevalence of SARS-CoV-2 infection in pet cat and dog populations, and hence, the risk of zoonotic transmission to veterinary staff, was low during the first wave of the pandemic, even in hotspot areas
    corecore