70 research outputs found
Matrix-equation-based strategies for convection-diffusion equations
We are interested in the numerical solution of nonsymmetric linear systems
arising from the discretization of convection-diffusion partial differential
equations with separable coefficients and dominant convection. Preconditioners
based on the matrix equation formulation of the problem are proposed, which
naturally approximate the original discretized problem. For certain types of
convection coefficients, we show that the explicit solution of the matrix
equation can effectively replace the linear system solution. Numerical
experiments with data stemming from two and three dimensional problems are
reported, illustrating the potential of the proposed methodology
Numerical methods for large-scale Lyapunov equations with symmetric banded data
The numerical solution of large-scale Lyapunov matrix equations with
symmetric banded data has so far received little attention in the rich
literature on Lyapunov equations. We aim to contribute to this open problem by
introducing two efficient solution methods, which respectively address the
cases of well conditioned and ill conditioned coefficient matrices. The
proposed approaches conveniently exploit the possibly hidden structure of the
solution matrix so as to deliver memory and computation saving approximate
solutions. Numerical experiments are reported to illustrate the potential of
the described methods
Solving rank structured Sylvester and Lyapunov equations
We consider the problem of efficiently solving Sylvester and Lyapunov
equations of medium and large scale, in case of rank-structured data, i.e.,
when the coefficient matrices and the right-hand side have low-rank
off-diagonal blocks. This comprises problems with banded data, recently studied
by Haber and Verhaegen in "Sparse solution of the Lyapunov equation for
large-scale interconnected systems", Automatica, 2016, and by Palitta and
Simoncini in "Numerical methods for large-scale Lyapunov equations with
symmetric banded data", SISC, 2018, which often arise in the discretization of
elliptic PDEs.
We show that, under suitable assumptions, the quasiseparable structure is
guaranteed to be numerically present in the solution, and explicit novel
estimates of the numerical rank of the off-diagonal blocks are provided.
Efficient solution schemes that rely on the technology of hierarchical
matrices are described, and several numerical experiments confirm the
applicability and efficiency of the approaches. We develop a MATLAB toolbox
that allows easy replication of the experiments and a ready-to-use interface
for the solvers. The performances of the different approaches are compared, and
we show that the new methods described are efficient on several classes of
relevant problems
Matrix Equation Techniques for Certain Evolutionary Partial Differential Equations
We show that the discrete operator stemming from time-space discretization of evolutionary partial differential equations can be represented in terms of a single Sylvester matrix equation. A novel solution strategy that combines projection techniques with the full exploitation of the entry-wise structure of the involved coefficient matrices is proposed. The resulting scheme is able to efficiently solve problems with a tremendous number of degrees of freedom while maintaining a low storage demand as illustrated in several numerical examples
Optimality Properties of Galerkin and Petrov-Galerkin Methods for Linear Matrix Equations
none2siGalerkin and Petrov–Galerkin methods are some of the most successful solution procedures in numerical analysis. Their popularity is mainly due to the optimality properties of their approximate solution. We show that these features carry over to the (Petrov-) Galerkin methods applied for the solution of linear matrix equations. Some novel considerations about the use of Galerkin and Petrov–Galerkin schemes in the numerical treatment of general linear matrix equations are expounded and the use of constrained minimization techniques in the Petrov–Galerkin framework is proposed.nonePalitta D.; Simoncini V.Palitta D.; Simoncini V
A new ParaDiag time-parallel time integration method
Time-parallel time integration has received a lot of attention in the high
performance computing community over the past two decades. Indeed, it has been
shown that parallel-in-time techniques have the potential to remedy one of the
main computational drawbacks of parallel-in-space solvers. In particular, it is
well-known that for large-scale evolution problems space parallelization
saturates long before all processing cores are effectively used on today's
large scale parallel computers. Among the many approaches for time-parallel
time integration, ParaDiag schemes have proved themselves to be a very
effective approach. In this framework, the time stepping matrix or an
approximation thereof is diagonalized by Fourier techniques, so that
computations taking place at different time steps can be indeed carried out in
parallel. We propose here a new ParaDiag algorithm combining the
Sherman-Morrison-Woodbury formula and Krylov techniques. A panel of diverse
numerical examples illustrates the potential of our new solver. In particular,
we show that it performs very well compared to different ParaDiag algorithms
recently proposed in the literature
An Efficient, Memory-Saving Approach for the Loewner Framework
The Loewner framework is one of the most successful data-driven model order reduction techniques. If N is the cardinality of a given data set, the so-called Loewner and shifted Loewner matrices [Formula: see text] and [Formula: see text] can be defined by solely relying on information encoded in the considered data set and they play a crucial role in the computation of the sought rational model approximation.In particular, the singular value decomposition of a linear combination of [Formula: see text] and [Formula: see text] provides the tools needed to construct accurate models which fulfill important approximation properties with respect to the original data set. However, for highly-sampled data sets, the dense nature of [Formula: see text] and [Formula: see text] leads to numerical difficulties, namely the failure to allocate these matrices in certain memory-limited environments or excessive computational costs. Even though they do not possess any sparsity pattern, the Loewner and shifted Loewner matrices are extremely structured and, in this paper, we show how to fully exploit their Cauchy-like structure to reduce the cost of computing accurate rational models while avoiding the explicit allocation of [Formula: see text] and [Formula: see text] . In particular, the use of the hierarchically semiseparable format allows us to remarkably lower both the computational cost and the memory requirements of the Loewner framework obtaining a novel scheme whose costs scale with [Formula: see text]
- …