8 research outputs found

    Assessment of existing steel frames: Numerical study, pseudo-dynamic testing and influence of masonry infills

    Get PDF
    Most of existing steel multi-storey frames in Europe have been designed before the introduction of modern seismic design provisions, hence they often exhibit low performance under earthquake loads due to their low lateral resistance and energy dissipation capacity. In addition, such structures often include rigid and brittle masonry infill walls that highly influence their lateral response and distribution of damage pattern. However, current procedures for the assessment of existing steel buildings in Europe, included in the Eurocode 8 – Part 3 (EC8–3), do not provide adequate guidance for the assessment of ‘weak’ steel frame with masonry infill walls. Moreover, most of available modelling approaches of masonry infills formerly developed for reinforced concrete (RC) structures do not properly represent the behaviour of infill walls in steel frames. An improved numerical has to be provided to satisfactorily mimic infill walls' behaviour in steel moment frames. To this end, an experimental and theoretical study was carried out within the framework of HITFRAMES (i.e., HybrId Testing of an Existing Steel Frame with Infills under Multiple EarthquakeS) SERA project. This paper firstly presents the limitations of current EC8–3 by conducting a code-based assessment on a case study steel moment frame using pushover analysis. Three different single strut models, widely used for simulating the presence of masonry infills in RC structures, are considered for the numerical analyses. The paper also presents the results of pseudo-dynamic (PsD) tests performed on a large-scale 3D steel frame with masonry infills. The capability of the different masonry infill models is successively evaluated by comparisons between numerical and experimental results. On the basis of the obtained results, recommendations on how to potentially improve the single strut model for masonry infills surrounded by steel frames are also provided

    Mechanical response of an industrial piping system under strong cyclic loading

    No full text
    The paper presents a combined experimental and numerical investigation of cyclic loading response of an internally pressurized steel piping system. The piping system comprises three elbows and is subjected to quasi-static end-displacement excitation. Global deformation and local strain measurements are obtained, indicating significant strain ratcheting at the critical locations of the elbows. The piping system failed under lowcycle fatigue undergoing through-thickness cracking at the flank of the most strained elbow. Post-fatigue metallographic examination of the elbows indicated that fatigue cracking initiates from the inner surface of the pipe elbow. In all elbows, several micro-cracks develop along the inner surface of elbow flanks, whereas the outer surface remained practically intact before through-thickness cracking. Finite element simulations, with a properly calibrated cyclic-plasticity model calibrated properly in terms of small-scale material tests, provide very good predictions in terms of local strain evolution at critical locations. Copyright © 2021 by ASME

    An intercontinental hybrid simulation experiment for the purposes of the seismic assessment of a three-span RC bridge

    No full text
    This paper presents the challenges encountered in preparing and conducting hybrid experiments between E.U., U.S. and Canada in the framework of an FP7-funded European project focusing on the study of seismic soil-structure interaction effects in bridge structures. The test involved partners located on both sides of the Atlantic; each one assigned a numerical or a physical module of the sub-structured bridge. More precisely, the seismic response of a recently built, 99m long, three-span, reinforced concrete bridge is assessed, after sub-structuring it into five structural components (modules); four of them being numerically analyzed in computers located in the cities of Thessaloniki (Greece), Patras (Greece), Urbana-Champaign. IL (U.S.) and Toronto (Canada) while an elastomeric bearing was physically tested in Patras (Greece). The results of the hybrid experiment, the challenges met during all stages of the campaign, as well as the feasibility, robustness and repetitiveness of the intercontinental hybrid simulation test are presented and critically discusse

    Assessment of existing steel frames: Numerical study, pseudo-dynamic testing and influence of masonry infills

    No full text
    Most of existing steel multi-storey frames in Europe have been designed before the introduction of modern seismic design provisions, hence they often exhibit low performance under earthquake loads due to their low lateral resistance and energy dissipation capacity. In addition, such structures often include rigid and brittle masonry infill walls that highly influence their lateral response and distribution of damage pattern. However, current procedures for the assessment of existing steel buildings in Europe, included in the Eurocode 8 – Part 3 (EC8–3), do not provide adequate guidance for the assessment of ‘weak’ steel frame with masonry infill walls. Moreover, most of available modelling approaches of masonry infills formerly developed for reinforced concrete (RC) structures do not properly represent the behaviour of infill walls in steel frames. An improved numerical has to be provided to satisfactorily mimic infill walls' behaviour in steel moment frames. To this end, an experimental and theoretical study was carried out within the framework of HITFRAMES (i.e., HybrId Testing of an Existing Steel Frame with Infills under Multiple EarthquakeS) SERA project. This paper firstly presents the limitations of current EC8–3 by conducting a code-based assessment on a case study steel moment frame using pushover analysis. Three different single strut models, widely used for simulating the presence of masonry infills in RC structures, are considered for the numerical analyses. The paper also presents the results of pseudo-dynamic (PsD) tests performed on a large-scale 3D steel frame with masonry infills. The capability of the different masonry infill models is successively evaluated by comparisons between numerical and experimental results. On the basis of the obtained results, recommendations on how to potentially improve the single strut model for masonry infills surrounded by steel frames are also provided
    corecore